MCAW-YOLO: An Efficient Detection Model for Ceramic Tile Surface Defects

Bibliographic Details
Title: MCAW-YOLO: An Efficient Detection Model for Ceramic Tile Surface Defects
Authors: Xulong Yu, Qiancheng Yu, Qunyue Mu, Zhiyong Hu, Jincai Xie
Source: Applied Sciences, Vol 13, Iss 21, p 12057 (2023)
Publisher Information: MDPI AG, 2023.
Publication Year: 2023
Collection: LCC:Technology
LCC:Engineering (General). Civil engineering (General)
LCC:Biology (General)
LCC:Physics
LCC:Chemistry
Subject Terms: ceramic tile surface-defect detection, multi-scale feature fusion, attention mechanism, loss function, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
More Details: Traditional manual visual detection methods are inefficient, subjective, and costly, making them prone to false and missed detections. Deep-learning-based defect detection identifies the types of defects and pinpoints their locations. By employing this approach, we could enhance the production workflow, boost production efficiency, minimize company expenses, and lessen the workload on workers. In this paper, we propose a lightweight tile-defect detection algorithm that strikes a balance between model parameters and accuracy. Firstly, we introduced the mobile-friendly vision transformer into the backbone network to capture global and local information. This allowed the model to comprehend the image content better and enhance defect feature extraction. Secondly, we designed a lightweight feature fusion network. This design amplified the network’s detection capability for defects of different scales and mitigated the blurriness and redundancy in the feature maps while reducing the model’s parameter count. We then devised a convolution module incorporating the normalization-based attention module, to direct the model’s focus toward defect features. This reduced background noise and filtered out features irrelevant to defects. Finally, we utilized a bounding box regression loss with a dynamic focusing mechanism. This approach facilitated the prediction of more precise object bounding boxes, thereby improving the model’s convergence rate and detection precision. Experimental results demonstrated that the improved algorithm achieved a mean average precision of 71.9%, marking a 3.1% improvement over the original algorithm. Furthermore, there was a reduction of 26.2% in the model’s parameters and a 20.9% decrease in the number of calculations.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2076-3417
Relation: https://www.mdpi.com/2076-3417/13/21/12057; https://doaj.org/toc/2076-3417
DOI: 10.3390/app132112057
Access URL: https://doaj.org/article/c0bd082351244013bf3caefc2f34dc38
Accession Number: edsdoj.0bd082351244013bf3caefc2f34dc38
Database: Directory of Open Access Journals
More Details
ISSN:20763417
DOI:10.3390/app132112057
Published in:Applied Sciences
Language:English