Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling.

Bibliographic Details
Title: Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling.
Authors: Stinus Lindgreen, Sinan Uğur Umu, Alicia Sook-Wei Lai, Hisham Eldai, Wenting Liu, Stephanie McGimpsey, Nicole E Wheeler, Patrick J Biggs, Nick R Thomson, Lars Barquist, Anthony M Poole, Paul P Gardner
Source: PLoS Computational Biology, Vol 10, Iss 10, p e1003907 (2014)
Publisher Information: Public Library of Science (PLoS), 2014.
Publication Year: 2014
Collection: LCC:Biology (General)
Subject Terms: Biology (General), QH301-705.5
More Details: Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1553-734X
1553-7358
Relation: https://doaj.org/toc/1553-734X; https://doaj.org/toc/1553-7358
DOI: 10.1371/journal.pcbi.1003907
Access URL: https://doaj.org/article/02bde787cb66465185af2fb45564a032
Accession Number: edsdoj.02bde787cb66465185af2fb45564a032
Database: Directory of Open Access Journals
More Details
ISSN:1553734X
15537358
DOI:10.1371/journal.pcbi.1003907
Published in:PLoS Computational Biology
Language:English