Quantum Inspired Excited States Calculations for Molecules Based on Contextual Subspace and Symmetry Optimizations

Bibliographic Details
Title: Quantum Inspired Excited States Calculations for Molecules Based on Contextual Subspace and Symmetry Optimizations
Authors: Yao, Qianjun, Li, He
Publication Year: 2025
Collection: Quantum Physics
Subject Terms: Quantum Physics
More Details: Quantum-inspired methods for excited-state calculations remain underexplored in Noisy Intermediate-Scale Quantum (NISQ) hardware, despite their critical role in photochemistry and material science. Here, we propose a resource-efficient framework that integrates the contextual subspace (CS) method with the Variational Quantum Deflation (VQD) algorithm to enable systematic excited-state calculations for molecules while reducing qubit requirements. On the basis of the numerical results, we find that it is unproblematic to utilize this combination in calculating the excited state to reduce qubits. Furthermore, we demonstrate that the implementation of a spin-conserving hardware-efficient ansatz, namely the $\mathcal{N}(\theta_x,\theta_y,\theta_z)$ block ansatz, allows exploitation of spin symmetry within the projected subspace, thereby achieving further reductions in computational resource demands. Compared to the commonly used $R_{y}R_{z}$ ansatz, using the $\mathcal{N}(\theta_x,\theta_y,\theta_z)$ ansatz can reduce the number of optimization iterations by up to 3 times at a similar circuit depth.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2502.17932
Accession Number: edsarx.2502.17932
Database: arXiv
More Details
Description not available.