Multimodal Whole Slide Foundation Model for Pathology

Bibliographic Details
Title: Multimodal Whole Slide Foundation Model for Pathology
Authors: Ding, Tong, Wagner, Sophia J., Song, Andrew H., Chen, Richard J., Lu, Ming Y., Zhang, Andrew, Vaidya, Anurag J., Jaume, Guillaume, Shaban, Muhammad, Kim, Ahrong, Williamson, Drew F. K., Chen, Bowen, Almagro-Perez, Cristina, Doucet, Paul, Sahai, Sharifa, Chen, Chengkuan, Komura, Daisuke, Kawabe, Akihiro, Ishikawa, Shumpei, Gerber, Georg, Peng, Tingying, Le, Long Phi, Mahmood, Faisal
Publication Year: 2024
Collection: Computer Science
Statistics
Subject Terms: Electrical Engineering and Systems Science - Image and Video Processing, Computer Science - Artificial Intelligence, Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning, Statistics - Applications
More Details: The field of computational pathology has been transformed with recent advances in foundation models that encode histopathology region-of-interests (ROIs) into versatile and transferable feature representations via self-supervised learning (SSL). However, translating these advancements to address complex clinical challenges at the patient and slide level remains constrained by limited clinical data in disease-specific cohorts, especially for rare clinical conditions. We propose TITAN, a multimodal whole slide foundation model pretrained using 335,645 WSIs via visual self-supervised learning and vision-language alignment with corresponding pathology reports and 423,122 synthetic captions generated from a multimodal generative AI copilot for pathology. Without any finetuning or requiring clinical labels, TITAN can extract general-purpose slide representations and generate pathology reports that generalize to resource-limited clinical scenarios such as rare disease retrieval and cancer prognosis. We evaluate TITAN on diverse clinical tasks and find that TITAN outperforms both ROI and slide foundation models across machine learning settings such as linear probing, few-shot and zero-shot classification, rare cancer retrieval and cross-modal retrieval, and pathology report generation.
Comment: The code is accessible at https://github.com/mahmoodlab/TITAN
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2411.19666
Accession Number: edsarx.2411.19666
Database: arXiv
More Details
Description not available.