Superpixel Cost Volume Excitation for Stereo Matching

Bibliographic Details
Title: Superpixel Cost Volume Excitation for Stereo Matching
Authors: Liu, Shanglong, Qi, Lin, Dong, Junyu, Gu, Wenxiang, Xu, Liyi
Source: PRCV 2024
Publication Year: 2024
Collection: Computer Science
Subject Terms: Computer Science - Computer Vision and Pattern Recognition
More Details: In this work, we concentrate on exciting the intrinsic local consistency of stereo matching through the incorporation of superpixel soft constraints, with the objective of mitigating inaccuracies at the boundaries of predicted disparity maps. Our approach capitalizes on the observation that neighboring pixels are predisposed to belong to the same object and exhibit closely similar intensities within the probability volume of superpixels. By incorporating this insight, our method encourages the network to generate consistent probability distributions of disparity within each superpixel, aiming to improve the overall accuracy and coherence of predicted disparity maps. Experimental evalua tions on widely-used datasets validate the efficacy of our proposed approach, demonstrating its ability to assist cost volume-based matching networks in restoring competitive performance.
Comment: 13 pages, 7 figures
Document Type: Working Paper
DOI: 10.1007/978-981-97-8508-7_2
Access URL: http://arxiv.org/abs/2411.13105
Accession Number: edsarx.2411.13105
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2411.13105
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20241120&spage=&pages=&title=Superpixel Cost Volume Excitation for Stereo Matching&atitle=Superpixel%20Cost%20Volume%20Excitation%20for%20Stereo%20Matching&aulast=Liu%2C%20Shanglong&id=DOI:10.1007/978-981-97-8508-7_2
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2411.13105
RelevancyScore: 1128
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1128.03247070313
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Superpixel Cost Volume Excitation for Stereo Matching
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Liu%2C+Shanglong%22">Liu, Shanglong</searchLink><br /><searchLink fieldCode="AR" term="%22Qi%2C+Lin%22">Qi, Lin</searchLink><br /><searchLink fieldCode="AR" term="%22Dong%2C+Junyu%22">Dong, Junyu</searchLink><br /><searchLink fieldCode="AR" term="%22Gu%2C+Wenxiang%22">Gu, Wenxiang</searchLink><br /><searchLink fieldCode="AR" term="%22Xu%2C+Liyi%22">Xu, Liyi</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: PRCV 2024
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Computer+Science+-+Computer+Vision+and+Pattern+Recognition%22">Computer Science - Computer Vision and Pattern Recognition</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this work, we concentrate on exciting the intrinsic local consistency of stereo matching through the incorporation of superpixel soft constraints, with the objective of mitigating inaccuracies at the boundaries of predicted disparity maps. Our approach capitalizes on the observation that neighboring pixels are predisposed to belong to the same object and exhibit closely similar intensities within the probability volume of superpixels. By incorporating this insight, our method encourages the network to generate consistent probability distributions of disparity within each superpixel, aiming to improve the overall accuracy and coherence of predicted disparity maps. Experimental evalua tions on widely-used datasets validate the efficacy of our proposed approach, demonstrating its ability to assist cost volume-based matching networks in restoring competitive performance.<br />Comment: 13 pages, 7 figures
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/978-981-97-8508-7_2
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2411.13105" linkWindow="_blank">http://arxiv.org/abs/2411.13105</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2411.13105
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2411.13105
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/978-981-97-8508-7_2
    Subjects:
      – SubjectFull: Computer Science - Computer Vision and Pattern Recognition
        Type: general
    Titles:
      – TitleFull: Superpixel Cost Volume Excitation for Stereo Matching
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Liu, Shanglong
      – PersonEntity:
          Name:
            NameFull: Qi, Lin
      – PersonEntity:
          Name:
            NameFull: Dong, Junyu
      – PersonEntity:
          Name:
            NameFull: Gu, Wenxiang
      – PersonEntity:
          Name:
            NameFull: Xu, Liyi
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 20
              M: 11
              Type: published
              Y: 2024
ResultId 1