A further $q$-analogue of a formula due to Guillera

Bibliographic Details
Title: A further $q$-analogue of a formula due to Guillera
Authors: Campbell, John M.
Publication Year: 2024
Collection: Mathematics
Subject Terms: Mathematics - Combinatorics, 05A30
More Details: Hou, Krattenthaler, and Sun have introduced two $q$-analogues of a remarkable series for $\pi^2$ due to Guillera, and these $q$-identities were, respectively, proved with the use of a $q$-analogue of a Wilf-Zeilberger pair provided by Guillera and with the use of ${}_{3}\phi_{2}$-transforms. We prove a $q$-analogue of Guillera's formula for $\pi^2$ that is inequivalent to previously known $q$-analogues of the same formula due to Guillera, including the Hou-Krattenthaler-Sun $q$-identities and a subsequent $q$-identity due to Wei. In contrast to previously known $q$-analogues of Guillera's formula, our new $q$-analogue involves another free parameter apart from the $q$-parameter. Our derivation of this new result relies on the $q$-analogue of Zeilberger's algorithm.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2407.00621
Accession Number: edsarx.2407.00621
Database: arXiv
More Details
Description not available.