LLM-Based Section Identifiers Excel on Open Source but Stumble in Real World Applications

Bibliographic Details
Title: LLM-Based Section Identifiers Excel on Open Source but Stumble in Real World Applications
Authors: Krishnamoorthy, Saranya, Singh, Ayush, Tafreshi, Shabnam
Publication Year: 2024
Collection: Computer Science
Subject Terms: Computer Science - Computation and Language, Computer Science - Artificial Intelligence
More Details: Electronic health records (EHR) even though a boon for healthcare practitioners, are growing convoluted and longer every day. Sifting around these lengthy EHRs is taxing and becomes a cumbersome part of physician-patient interaction. Several approaches have been proposed to help alleviate this prevalent issue either via summarization or sectioning, however, only a few approaches have truly been helpful in the past. With the rise of automated methods, machine learning (ML) has shown promise in solving the task of identifying relevant sections in EHR. However, most ML methods rely on labeled data which is difficult to get in healthcare. Large language models (LLMs) on the other hand, have performed impressive feats in natural language processing (NLP), that too in a zero-shot manner, i.e. without any labeled data. To that end, we propose using LLMs to identify relevant section headers. We find that GPT-4 can effectively solve the task on both zero and few-shot settings as well as segment dramatically better than state-of-the-art methods. Additionally, we also annotate a much harder real world dataset and find that GPT-4 struggles to perform well, alluding to further research and harder benchmarks.
Comment: To appear in NAACL 2024 at the 6th Clinical Natural Language Processing Workshop
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2404.16294
Accession Number: edsarx.2404.16294
Database: arXiv
More Details
Description not available.