Non-Linear Additive Twists of $\mathrm{GL}_{3}$ Hecke Eigenvalues

Bibliographic Details
Title: Non-Linear Additive Twists of $\mathrm{GL}_{3}$ Hecke Eigenvalues
Authors: Kaneko, Ikuya, Leung, Wing Hong
Publication Year: 2023
Collection: Mathematics
Subject Terms: Mathematics - Number Theory, 11F66, 11M41 (primary), 11F55 (secondary)
More Details: We bound non-linear additive twists of $\mathrm{GL}_{3}$ Hecke eigenvalues, improving upon the work of Kumar-Mallesham-Singh (2022). The proof employs the DFI circle method with standard manipulations (Voronoi, Cauchy-Schwarz, lengthening, and additive reciprocity). The main novelty includes the conductor lowering mechanism, albeit sacrificing some savings to remove an analytic oscillation, followed by the iteration ad infinitum of Cauchy-Schwarz and Poisson. The resulting character sums are estimated via the work of Adolphson-Sperber (1993). As an application, we prove nontrivial bounds for the first moment of $\mathrm{GL}_{3}$ Hardy's function, which corresponds to the cubic moment of Hardy's function studied by Ivi\'{c} (2012).
Comment: 26 pages. LaTeX2e
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2311.13788
Accession Number: edsarx.2311.13788
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2311.13788
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20231122&spage=&pages=&title=Non-Linear Additive Twists of $\mathrm{GL}_{3}$ Hecke Eigenvalues&atitle=Non-Linear%20Additive%20Twists%20of%20%24%5Cmathrm%7BGL%7D_%7B3%7D%24%20Hecke%20Eigenvalues&aulast=Kaneko%2C%20Ikuya&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2311.13788
RelevancyScore: 1073
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1073.15942382813
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Non-Linear Additive Twists of $\mathrm{GL}_{3}$ Hecke Eigenvalues
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Kaneko%2C+Ikuya%22">Kaneko, Ikuya</searchLink><br /><searchLink fieldCode="AR" term="%22Leung%2C+Wing+Hong%22">Leung, Wing Hong</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Mathematics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Mathematics+-+Number+Theory%22">Mathematics - Number Theory</searchLink><br /><searchLink fieldCode="DE" term="%2211F66%2C+11M41+%28primary%29%2C+11F55+%28secondary%29%22">11F66, 11M41 (primary), 11F55 (secondary)</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We bound non-linear additive twists of $\mathrm{GL}_{3}$ Hecke eigenvalues, improving upon the work of Kumar-Mallesham-Singh (2022). The proof employs the DFI circle method with standard manipulations (Voronoi, Cauchy-Schwarz, lengthening, and additive reciprocity). The main novelty includes the conductor lowering mechanism, albeit sacrificing some savings to remove an analytic oscillation, followed by the iteration ad infinitum of Cauchy-Schwarz and Poisson. The resulting character sums are estimated via the work of Adolphson-Sperber (1993). As an application, we prove nontrivial bounds for the first moment of $\mathrm{GL}_{3}$ Hardy's function, which corresponds to the cubic moment of Hardy's function studied by Ivi\'{c} (2012).<br />Comment: 26 pages. LaTeX2e
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2311.13788" linkWindow="_blank">http://arxiv.org/abs/2311.13788</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2311.13788
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2311.13788
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Mathematics - Number Theory
        Type: general
      – SubjectFull: 11F66, 11M41 (primary), 11F55 (secondary)
        Type: general
    Titles:
      – TitleFull: Non-Linear Additive Twists of $\mathrm{GL}_{3}$ Hecke Eigenvalues
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Kaneko, Ikuya
      – PersonEntity:
          Name:
            NameFull: Leung, Wing Hong
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 22
              M: 11
              Type: published
              Y: 2023
ResultId 1