Unmasking Biases and Navigating Pitfalls in the Ophthalmic Artificial Intelligence Lifecycle: A Review

Bibliographic Details
Title: Unmasking Biases and Navigating Pitfalls in the Ophthalmic Artificial Intelligence Lifecycle: A Review
Authors: Nakayama, Luis Filipe, Matos, João, Quion, Justin, Novaes, Frederico, Mitchell, William Greig, Mwavu, Rogers, Hung, Ju-Yi Ji, Santiago, Alvina Pauline dy, Phanphruk, Warachaya, Cardoso, Jaime S., Celi, Leo Anthony
Publication Year: 2023
Collection: Computer Science
Subject Terms: Computer Science - Computers and Society
More Details: Over the past two decades, exponential growth in data availability, computational power, and newly available modeling techniques has led to an expansion in interest, investment, and research in Artificial Intelligence (AI) applications. Ophthalmology is one of many fields that seek to benefit from AI given the advent of telemedicine screening programs and the use of ancillary imaging. However, before AI can be widely deployed, further work must be done to avoid the pitfalls within the AI lifecycle. This review article breaks down the AI lifecycle into seven steps: data collection; defining the model task; data pre-processing and labeling; model development; model evaluation and validation; deployment; and finally, post-deployment evaluation, monitoring, and system recalibration and delves into the risks for harm at each step and strategies for mitigating them.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2310.04997
Accession Number: edsarx.2310.04997
Database: arXiv
More Details
Description not available.