The miniJPAS survey quasar selection III: Classification with artificial neural networks and hybridisation

Bibliographic Details
Title: The miniJPAS survey quasar selection III: Classification with artificial neural networks and hybridisation
Authors: Martínez-Solaeche, G., Queiroz, Carolina, Delgado, R. M. González, Rodrigues, Natália V. N., García-Benito, R., Pérez-Ràfols, Ignasi, Abramo, L. Raul, Díaz-García, Luis, Pieri, Matthew M., Chaves-Montero, Jonás, Hernán-Caballero, A., Rodríguez-Martín, J. E., Bonoli, Silvia, Morrison, Sean S., Márquez, Isabel, Vílchez, J. M., López-Sanjuan, C., Cenarro, A. J., Dupke, R. A., Martín-Franch, A., Varel, J., Ramió, H. Vázquez, Cristóbal-Hornillos, D., Moles, M., Alcaniz, J., Benitez, N., Fernández-Ontiveros, J. A., Ederoclite, A., Marra, V., de Oliveira, C. Mendes, Taylor, K.
Source: A&A 673, A103 (2023)
Publication Year: 2023
Collection: Astrophysics
Subject Terms: Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics
More Details: This paper is part of large effort within the J-PAS collaboration that aims to classify point-like sources in miniJPAS, which were observed in 60 optical bands over $\sim$ 1 deg$^2$ in the AEGIS field. We developed two algorithms based on artificial neural networks (ANN) to classify objects into four categories: stars, galaxies, quasars at low redshift ($z < 2.1)$, and quasars at high redshift ($z \geq 2.1$). As inputs, we used miniJPAS fluxes for one of the classifiers (ANN$_1$) and colours for the other (ANN$_2$). The ANNs were trained and tested using mock data in the first place. We studied the effect of augmenting the training set by creating hybrid objects, which combines fluxes from stars, galaxies, and quasars. Nevertheless, the augmentation processing did not improve the score of the ANN. We also evaluated the performance of the classifiers in a small subset of the SDSS DR12Q superset observed by miniJPAS. In the mock test set, the f1-score for quasars at high redshift with the ANN$_1$ (ANN$_2$) are $0.99$ ($0.99$), $0.93$ ($0.92$), and $0.63$ ($0.57$) for $17 < r \leq 20$, $20 < r \leq 22.5$, and $22.5 < r \leq 23.6$, respectively, where $r$ is the J-PAS rSDSS band. In the case of low-redshift quasars, galaxies, and stars, we reached $0.97$ ($0.97$), $0.82$ ($0.79$), and $0.61$ ($0.58$); $0.94$ ($0.94$), $0.90$ ($0.89$), and $0.81$ ($0.80$); and $1.0$ ($1.0$), $0.96$ ($0.94$), and $0.70$ ($0.52$) in the same r bins. In the SDSS DR12Q superset miniJPAS sample, the weighted f1-score reaches 0.87 (0.88) for objects that are mostly within $20 < r \leq 22.5$. Finally, we estimate the number of point-like sources that are quasars, galaxies, and stars in miniJPAS.
Document Type: Working Paper
DOI: 10.1051/0004-6361/202245750
Access URL: http://arxiv.org/abs/2303.12684
Accession Number: edsarx.2303.12684
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2303.12684
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20230322&spage=&pages=&title=The miniJPAS survey quasar selection III: Classification with artificial neural networks and hybridisation&atitle=The%20miniJPAS%20survey%20quasar%20selection%20III%3A%20Classification%20with%20artificial%20neural%20networks%20and%20hybridisation&aulast=Mart%C3%ADnez-Solaeche%2C%20G.&id=DOI:10.1051/0004-6361/202245750
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2303.12684
RelevancyScore: 1051
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1051.00573730469
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: The miniJPAS survey quasar selection III: Classification with artificial neural networks and hybridisation
– Name: Author
  Label: Authors
  Group: Au
  Data: &lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Mart&#237;nez-Solaeche%2C+G%2E%22&quot;&gt;Mart&#237;nez-Solaeche, G.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Queiroz%2C+Carolina%22&quot;&gt;Queiroz, Carolina&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Delgado%2C+R%2E+M%2E+Gonz&#225;lez%22&quot;&gt;Delgado, R. M. Gonz&#225;lez&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Rodrigues%2C+Nat&#225;lia+V%2E+N%2E%22&quot;&gt;Rodrigues, Nat&#225;lia V. N.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Garc&#237;a-Benito%2C+R%2E%22&quot;&gt;Garc&#237;a-Benito, R.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22P&#233;rez-R&#224;fols%2C+Ignasi%22&quot;&gt;P&#233;rez-R&#224;fols, Ignasi&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Abramo%2C+L%2E+Raul%22&quot;&gt;Abramo, L. Raul&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22D&#237;az-Garc&#237;a%2C+Luis%22&quot;&gt;D&#237;az-Garc&#237;a, Luis&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Pieri%2C+Matthew+M%2E%22&quot;&gt;Pieri, Matthew M.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Chaves-Montero%2C+Jon&#225;s%22&quot;&gt;Chaves-Montero, Jon&#225;s&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Hern&#225;n-Caballero%2C+A%2E%22&quot;&gt;Hern&#225;n-Caballero, A.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Rodr&#237;guez-Mart&#237;n%2C+J%2E+E%2E%22&quot;&gt;Rodr&#237;guez-Mart&#237;n, J. E.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Bonoli%2C+Silvia%22&quot;&gt;Bonoli, Silvia&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Morrison%2C+Sean+S%2E%22&quot;&gt;Morrison, Sean S.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22M&#225;rquez%2C+Isabel%22&quot;&gt;M&#225;rquez, Isabel&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22V&#237;lchez%2C+J%2E+M%2E%22&quot;&gt;V&#237;lchez, J. M.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22L&#243;pez-Sanjuan%2C+C%2E%22&quot;&gt;L&#243;pez-Sanjuan, C.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Cenarro%2C+A%2E+J%2E%22&quot;&gt;Cenarro, A. J.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Dupke%2C+R%2E+A%2E%22&quot;&gt;Dupke, R. A.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Mart&#237;n-Franch%2C+A%2E%22&quot;&gt;Mart&#237;n-Franch, A.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Varel%2C+J%2E%22&quot;&gt;Varel, J.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Rami&#243;%2C+H%2E+V&#225;zquez%22&quot;&gt;Rami&#243;, H. V&#225;zquez&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Crist&#243;bal-Hornillos%2C+D%2E%22&quot;&gt;Crist&#243;bal-Hornillos, D.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Moles%2C+M%2E%22&quot;&gt;Moles, M.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Alcaniz%2C+J%2E%22&quot;&gt;Alcaniz, J.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Benitez%2C+N%2E%22&quot;&gt;Benitez, N.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Fern&#225;ndez-Ontiveros%2C+J%2E+A%2E%22&quot;&gt;Fern&#225;ndez-Ontiveros, J. A.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Ederoclite%2C+A%2E%22&quot;&gt;Ederoclite, A.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Marra%2C+V%2E%22&quot;&gt;Marra, V.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22de+Oliveira%2C+C%2E+Mendes%22&quot;&gt;de Oliveira, C. Mendes&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Taylor%2C+K%2E%22&quot;&gt;Taylor, K.&lt;/searchLink&gt;
– Name: TitleSource
  Label: Source
  Group: Src
  Data: A&amp;A 673, A103 (2023)
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Astrophysics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: &lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Astrophysics+-+Astrophysics+of+Galaxies%22&quot;&gt;Astrophysics - Astrophysics of Galaxies&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Astrophysics+-+Cosmology+and+Nongalactic+Astrophysics%22&quot;&gt;Astrophysics - Cosmology and Nongalactic Astrophysics&lt;/searchLink&gt;
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This paper is part of large effort within the J-PAS collaboration that aims to classify point-like sources in miniJPAS, which were observed in 60 optical bands over $\sim$ 1 deg$^2$ in the AEGIS field. We developed two algorithms based on artificial neural networks (ANN) to classify objects into four categories: stars, galaxies, quasars at low redshift ($z &lt; 2.1)$, and quasars at high redshift ($z \geq 2.1$). As inputs, we used miniJPAS fluxes for one of the classifiers (ANN$_1$) and colours for the other (ANN$_2$). The ANNs were trained and tested using mock data in the first place. We studied the effect of augmenting the training set by creating hybrid objects, which combines fluxes from stars, galaxies, and quasars. Nevertheless, the augmentation processing did not improve the score of the ANN. We also evaluated the performance of the classifiers in a small subset of the SDSS DR12Q superset observed by miniJPAS. In the mock test set, the f1-score for quasars at high redshift with the ANN$_1$ (ANN$_2$) are $0.99$ ($0.99$), $0.93$ ($0.92$), and $0.63$ ($0.57$) for $17 &lt; r \leq 20$, $20 &lt; r \leq 22.5$, and $22.5 &lt; r \leq 23.6$, respectively, where $r$ is the J-PAS rSDSS band. In the case of low-redshift quasars, galaxies, and stars, we reached $0.97$ ($0.97$), $0.82$ ($0.79$), and $0.61$ ($0.58$); $0.94$ ($0.94$), $0.90$ ($0.89$), and $0.81$ ($0.80$); and $1.0$ ($1.0$), $0.96$ ($0.94$), and $0.70$ ($0.52$) in the same r bins. In the SDSS DR12Q superset miniJPAS sample, the weighted f1-score reaches 0.87 (0.88) for objects that are mostly within $20 &lt; r \leq 22.5$. Finally, we estimate the number of point-like sources that are quasars, galaxies, and stars in miniJPAS.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1051/0004-6361/202245750
– Name: URL
  Label: Access URL
  Group: URL
  Data: &lt;link linkTarget=&quot;URL&quot; linkTerm=&quot;http://arxiv.org/abs/2303.12684&quot; linkWindow=&quot;_blank&quot;&gt;http://arxiv.org/abs/2303.12684&lt;/link&gt;
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2303.12684
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2303.12684
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1051/0004-6361/202245750
    Subjects:
      – SubjectFull: Astrophysics - Astrophysics of Galaxies
        Type: general
      – SubjectFull: Astrophysics - Cosmology and Nongalactic Astrophysics
        Type: general
    Titles:
      – TitleFull: The miniJPAS survey quasar selection III: Classification with artificial neural networks and hybridisation
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Martínez-Solaeche, G.
      – PersonEntity:
          Name:
            NameFull: Queiroz, Carolina
      – PersonEntity:
          Name:
            NameFull: Delgado, R. M. González
      – PersonEntity:
          Name:
            NameFull: Rodrigues, Natália V. N.
      – PersonEntity:
          Name:
            NameFull: García-Benito, R.
      – PersonEntity:
          Name:
            NameFull: Pérez-Ràfols, Ignasi
      – PersonEntity:
          Name:
            NameFull: Abramo, L. Raul
      – PersonEntity:
          Name:
            NameFull: Díaz-García, Luis
      – PersonEntity:
          Name:
            NameFull: Pieri, Matthew M.
      – PersonEntity:
          Name:
            NameFull: Chaves-Montero, Jonás
      – PersonEntity:
          Name:
            NameFull: Hernán-Caballero, A.
      – PersonEntity:
          Name:
            NameFull: Rodríguez-Martín, J. E.
      – PersonEntity:
          Name:
            NameFull: Bonoli, Silvia
      – PersonEntity:
          Name:
            NameFull: Morrison, Sean S.
      – PersonEntity:
          Name:
            NameFull: Márquez, Isabel
      – PersonEntity:
          Name:
            NameFull: Vílchez, J. M.
      – PersonEntity:
          Name:
            NameFull: López-Sanjuan, C.
      – PersonEntity:
          Name:
            NameFull: Cenarro, A. J.
      – PersonEntity:
          Name:
            NameFull: Dupke, R. A.
      – PersonEntity:
          Name:
            NameFull: Martín-Franch, A.
      – PersonEntity:
          Name:
            NameFull: Varel, J.
      – PersonEntity:
          Name:
            NameFull: Ramió, H. Vázquez
      – PersonEntity:
          Name:
            NameFull: Cristóbal-Hornillos, D.
      – PersonEntity:
          Name:
            NameFull: Moles, M.
      – PersonEntity:
          Name:
            NameFull: Alcaniz, J.
      – PersonEntity:
          Name:
            NameFull: Benitez, N.
      – PersonEntity:
          Name:
            NameFull: Fernández-Ontiveros, J. A.
      – PersonEntity:
          Name:
            NameFull: Ederoclite, A.
      – PersonEntity:
          Name:
            NameFull: Marra, V.
      – PersonEntity:
          Name:
            NameFull: de Oliveira, C. Mendes
      – PersonEntity:
          Name:
            NameFull: Taylor, K.
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 22
              M: 03
              Type: published
              Y: 2023
ResultId 1