Placental Vessel Segmentation and Registration in Fetoscopy: Literature Review and MICCAI FetReg2021 Challenge Findings

Bibliographic Details
Title: Placental Vessel Segmentation and Registration in Fetoscopy: Literature Review and MICCAI FetReg2021 Challenge Findings
Authors: Bano, Sophia, Casella, Alessandro, Vasconcelos, Francisco, Qayyum, Abdul, Benzinou, Abdesslam, Mazher, Moona, Meriaudeau, Fabrice, Lena, Chiara, Cintorrino, Ilaria Anita, De Paolis, Gaia Romana, Biagioli, Jessica, Grechishnikova, Daria, Jiao, Jing, Bai, Bizhe, Qiao, Yanyan, Bhattarai, Binod, Gaire, Rebati Raman, Subedi, Ronast, Vazquez, Eduard, Płotka, Szymon, Lisowska, Aneta, Sitek, Arkadiusz, Attilakos, George, Wimalasundera, Ruwan, David, Anna L, Paladini, Dario, Deprest, Jan, De Momi, Elena, Mattos, Leonardo S, Moccia, Sara, Stoyanov, Danail
Publication Year: 2022
Collection: Computer Science
Subject Terms: Electrical Engineering and Systems Science - Image and Video Processing, Computer Science - Artificial Intelligence, Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning
More Details: Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to regulate blood exchange among twins. The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation. Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision challenge, we released the first largescale multicentre TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. The challenge provided an opportunity for creating generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-centre fetoscopic data, we provide a benchmark for future research in this field.
Comment: Accepted at MedIA (Medical Image Analysis)
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2206.12512
Accession Number: edsarx.2206.12512
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2206.12512
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20220624&spage=&pages=&title=Placental Vessel Segmentation and Registration in Fetoscopy: Literature Review and MICCAI FetReg2021 Challenge Findings&atitle=Placental%20Vessel%20Segmentation%20and%20Registration%20in%20Fetoscopy%3A%20Literature%20Review%20and%20MICCAI%20FetReg2021%20Challenge%20Findings&aulast=Bano%2C%20Sophia&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2206.12512
RelevancyScore: 1032
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1032.39306640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Placental Vessel Segmentation and Registration in Fetoscopy: Literature Review and MICCAI FetReg2021 Challenge Findings
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Bano%2C+Sophia%22">Bano, Sophia</searchLink><br /><searchLink fieldCode="AR" term="%22Casella%2C+Alessandro%22">Casella, Alessandro</searchLink><br /><searchLink fieldCode="AR" term="%22Vasconcelos%2C+Francisco%22">Vasconcelos, Francisco</searchLink><br /><searchLink fieldCode="AR" term="%22Qayyum%2C+Abdul%22">Qayyum, Abdul</searchLink><br /><searchLink fieldCode="AR" term="%22Benzinou%2C+Abdesslam%22">Benzinou, Abdesslam</searchLink><br /><searchLink fieldCode="AR" term="%22Mazher%2C+Moona%22">Mazher, Moona</searchLink><br /><searchLink fieldCode="AR" term="%22Meriaudeau%2C+Fabrice%22">Meriaudeau, Fabrice</searchLink><br /><searchLink fieldCode="AR" term="%22Lena%2C+Chiara%22">Lena, Chiara</searchLink><br /><searchLink fieldCode="AR" term="%22Cintorrino%2C+Ilaria+Anita%22">Cintorrino, Ilaria Anita</searchLink><br /><searchLink fieldCode="AR" term="%22De+Paolis%2C+Gaia+Romana%22">De Paolis, Gaia Romana</searchLink><br /><searchLink fieldCode="AR" term="%22Biagioli%2C+Jessica%22">Biagioli, Jessica</searchLink><br /><searchLink fieldCode="AR" term="%22Grechishnikova%2C+Daria%22">Grechishnikova, Daria</searchLink><br /><searchLink fieldCode="AR" term="%22Jiao%2C+Jing%22">Jiao, Jing</searchLink><br /><searchLink fieldCode="AR" term="%22Bai%2C+Bizhe%22">Bai, Bizhe</searchLink><br /><searchLink fieldCode="AR" term="%22Qiao%2C+Yanyan%22">Qiao, Yanyan</searchLink><br /><searchLink fieldCode="AR" term="%22Bhattarai%2C+Binod%22">Bhattarai, Binod</searchLink><br /><searchLink fieldCode="AR" term="%22Gaire%2C+Rebati+Raman%22">Gaire, Rebati Raman</searchLink><br /><searchLink fieldCode="AR" term="%22Subedi%2C+Ronast%22">Subedi, Ronast</searchLink><br /><searchLink fieldCode="AR" term="%22Vazquez%2C+Eduard%22">Vazquez, Eduard</searchLink><br /><searchLink fieldCode="AR" term="%22Płotka%2C+Szymon%22">Płotka, Szymon</searchLink><br /><searchLink fieldCode="AR" term="%22Lisowska%2C+Aneta%22">Lisowska, Aneta</searchLink><br /><searchLink fieldCode="AR" term="%22Sitek%2C+Arkadiusz%22">Sitek, Arkadiusz</searchLink><br /><searchLink fieldCode="AR" term="%22Attilakos%2C+George%22">Attilakos, George</searchLink><br /><searchLink fieldCode="AR" term="%22Wimalasundera%2C+Ruwan%22">Wimalasundera, Ruwan</searchLink><br /><searchLink fieldCode="AR" term="%22David%2C+Anna+L%22">David, Anna L</searchLink><br /><searchLink fieldCode="AR" term="%22Paladini%2C+Dario%22">Paladini, Dario</searchLink><br /><searchLink fieldCode="AR" term="%22Deprest%2C+Jan%22">Deprest, Jan</searchLink><br /><searchLink fieldCode="AR" term="%22De+Momi%2C+Elena%22">De Momi, Elena</searchLink><br /><searchLink fieldCode="AR" term="%22Mattos%2C+Leonardo+S%22">Mattos, Leonardo S</searchLink><br /><searchLink fieldCode="AR" term="%22Moccia%2C+Sara%22">Moccia, Sara</searchLink><br /><searchLink fieldCode="AR" term="%22Stoyanov%2C+Danail%22">Stoyanov, Danail</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2022
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Electrical+Engineering+and+Systems+Science+-+Image+and+Video+Processing%22">Electrical Engineering and Systems Science - Image and Video Processing</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Artificial+Intelligence%22">Computer Science - Artificial Intelligence</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Computer+Vision+and+Pattern+Recognition%22">Computer Science - Computer Vision and Pattern Recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Machine+Learning%22">Computer Science - Machine Learning</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to regulate blood exchange among twins. The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation. Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision challenge, we released the first largescale multicentre TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. The challenge provided an opportunity for creating generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-centre fetoscopic data, we provide a benchmark for future research in this field.<br />Comment: Accepted at MedIA (Medical Image Analysis)
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2206.12512" linkWindow="_blank">http://arxiv.org/abs/2206.12512</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2206.12512
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2206.12512
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Electrical Engineering and Systems Science - Image and Video Processing
        Type: general
      – SubjectFull: Computer Science - Artificial Intelligence
        Type: general
      – SubjectFull: Computer Science - Computer Vision and Pattern Recognition
        Type: general
      – SubjectFull: Computer Science - Machine Learning
        Type: general
    Titles:
      – TitleFull: Placental Vessel Segmentation and Registration in Fetoscopy: Literature Review and MICCAI FetReg2021 Challenge Findings
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Bano, Sophia
      – PersonEntity:
          Name:
            NameFull: Casella, Alessandro
      – PersonEntity:
          Name:
            NameFull: Vasconcelos, Francisco
      – PersonEntity:
          Name:
            NameFull: Qayyum, Abdul
      – PersonEntity:
          Name:
            NameFull: Benzinou, Abdesslam
      – PersonEntity:
          Name:
            NameFull: Mazher, Moona
      – PersonEntity:
          Name:
            NameFull: Meriaudeau, Fabrice
      – PersonEntity:
          Name:
            NameFull: Lena, Chiara
      – PersonEntity:
          Name:
            NameFull: Cintorrino, Ilaria Anita
      – PersonEntity:
          Name:
            NameFull: De Paolis, Gaia Romana
      – PersonEntity:
          Name:
            NameFull: Biagioli, Jessica
      – PersonEntity:
          Name:
            NameFull: Grechishnikova, Daria
      – PersonEntity:
          Name:
            NameFull: Jiao, Jing
      – PersonEntity:
          Name:
            NameFull: Bai, Bizhe
      – PersonEntity:
          Name:
            NameFull: Qiao, Yanyan
      – PersonEntity:
          Name:
            NameFull: Bhattarai, Binod
      – PersonEntity:
          Name:
            NameFull: Gaire, Rebati Raman
      – PersonEntity:
          Name:
            NameFull: Subedi, Ronast
      – PersonEntity:
          Name:
            NameFull: Vazquez, Eduard
      – PersonEntity:
          Name:
            NameFull: Płotka, Szymon
      – PersonEntity:
          Name:
            NameFull: Lisowska, Aneta
      – PersonEntity:
          Name:
            NameFull: Sitek, Arkadiusz
      – PersonEntity:
          Name:
            NameFull: Attilakos, George
      – PersonEntity:
          Name:
            NameFull: Wimalasundera, Ruwan
      – PersonEntity:
          Name:
            NameFull: David, Anna L
      – PersonEntity:
          Name:
            NameFull: Paladini, Dario
      – PersonEntity:
          Name:
            NameFull: Deprest, Jan
      – PersonEntity:
          Name:
            NameFull: De Momi, Elena
      – PersonEntity:
          Name:
            NameFull: Mattos, Leonardo S
      – PersonEntity:
          Name:
            NameFull: Moccia, Sara
      – PersonEntity:
          Name:
            NameFull: Stoyanov, Danail
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 24
              M: 06
              Type: published
              Y: 2022
ResultId 1