Bibliographic Details
Title: |
Increased Phase Coherence Length in a Porous Topological Insulator |
Authors: |
Nguyen, Alex, Akhgar, Golrokh, Cortie, David L., Bake, Abdulhakim, Pastuovic, Zeljko, Zhao, Weiyao, Liu, Chang, Chen, Yi-Hsun, Suzuki, Kiyonori, Fuhrer, Michael S., Culcer, Dimitrie, Hamilton, Alexander R., Edmonds, Mark T., Karel, Julie |
Publication Year: |
2022 |
Collection: |
Condensed Matter |
Subject Terms: |
Condensed Matter - Materials Science |
More Details: |
The surface area of Bi2Te3 thin films was increased by introducing nanoscale porosity. Temperature dependent resistivity and magnetotransport measurements were conducted both on as-grown and porous samples (23 and 70 nm). The longitudinal resistivity of the porous samples became more metallic, indicating the increased surface area resulted in transport that was more surface-like. Weak antilocalization (WAL) was present in all samples, and remarkably the phase coherence length doubled in the porous samples. This increase is likely due to the large Fermi velocity of the Dirac surface states. Our results show that the introduction of nanoporosity does not destroy the topological surface states but rather enhances them, making these nanostructured materials promising for low energy electronics, spintronics and thermoelectrics. |
Document Type: |
Working Paper |
Access URL: |
http://arxiv.org/abs/2205.10589 |
Accession Number: |
edsarx.2205.10589 |
Database: |
arXiv |