Bibliographic Details
Title: |
Electron Weibel instability induced magnetic fields in optical-field ionized plasmas |
Authors: |
Zhang, Chaojie, Wu, Yipeng, Sinclair, Mitchell, Farrell, Audrey, Marsh, Kenneth A., Hua, Jianfei, Petrushina, Irina, Vafaei-Najafabadi, Navid, Kupfer, Rotem, Kusche, Karl, Fedurin, Mikhail, Pogorelsky, Igor, Polyanskiy, Mikhail, Huang, Chen-Kang, Lu, Wei, Mori, Warren B., Joshi, Chan |
Publication Year: |
2022 |
Subject Terms: |
Physics - Plasma Physics |
More Details: |
Generation and amplification of magnetic fields in plasmas is a long-standing topic that is of great interest to both plasma and space physics. The electron Weibel instability is a well-known mechanism responsible for self-generating magnetic fields in plasmas with temperature anisotropy and has been extensively investigated in both theory and simulations, yet experimental verification of this instability has been challenging. Recently, we demonstrated a new experimental platform that enables the controlled initialization of highly nonthermal and/or anisotropic plasma electron velocity distributions via optical-field ionization. Using an external electron probe bunch from a linear accelerator, the onset, saturation and decay of the self-generated magnetic fields due to electron Weibel instability were measured for the first time to our knowledge. In this paper, we will first present experimental results on time-resolved measurements of the Weibel magnetic fields in non-relativistic plasmas produced by Ti:Sapphire laser pulses (0.8 $\mu m$) and then discuss the feasibility of extending the study to quasi-relativistic regime by using intense $\rm CO_2$ (e.g., 9.2 $\mu m$) lasers to produce much hotter plasmas. Comment: 22 pages, 10 figures |
Document Type: |
Working Paper |
DOI: |
10.1063/5.0089814 |
Access URL: |
http://arxiv.org/abs/2204.04262 |
Accession Number: |
edsarx.2204.04262 |
Database: |
arXiv |