Increasing FPGA Accelerators Memory Bandwidth with a Burst-Friendly Memory Layout

Bibliographic Details
Title: Increasing FPGA Accelerators Memory Bandwidth with a Burst-Friendly Memory Layout
Authors: Ferry, Corentin, Yuki, Tomofumi, Derrien, Steven, Rajopadhye, Sanjay
Publication Year: 2022
Collection: Computer Science
Subject Terms: Computer Science - Hardware Architecture, B.4.4
More Details: Offloading compute-intensive kernels to hardware accelerators relies on the large degree of parallelism offered by these platforms. However, the effective bandwidth of the memory interface often causes a bottleneck, hindering the accelerator's effective performance. Techniques enabling data reuse, such as tiling, lower the pressure on memory traffic but still often leave the accelerators I/O-bound. A further increase in effective bandwidth is possible by using burst rather than element-wise accesses, provided the data is contiguous in memory. In this paper, we propose a memory allocation technique, and provide a proof-of-concept source-to-source compiler pass, that enables such burst transfers by modifying the data layout in external memory. We assess how this technique pushes up the memory throughput, leaving room for exploiting additional parallelism, for a minimal logic overhead.
Comment: 16 pages; 17 figures
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2202.05933
Accession Number: edsarx.2202.05933
Database: arXiv
More Details
Description not available.