Accuracy analysis of Educational Data Mining using Feature Selection Algorithm

Bibliographic Details
Title: Accuracy analysis of Educational Data Mining using Feature Selection Algorithm
Authors: Almalki, Ali Jaber
Source: Int'l Conf. Artificial Intelligence ICAI2019
Publication Year: 2021
Collection: Computer Science
Subject Terms: Computer Science - Machine Learning, Computer Science - Databases
More Details: Gathering relevant information to predict student academic progress is a tedious task. Due to the large amount of irrelevant data present in databases which provides inaccurate results. Currently, it is not possible to accurately measure and analyze student data because there are too many irrelevant attributes and features in the data. With the help of Educational Data Mining (EDM), the quality of information can be improved. This research demonstrates how EDM helps to measure the accuracy of data using relevant attributes and machine learning algorithms performed. With EDM, irrelevant features are removed without changing the original data. The data set used in this study was taken from Kaggle.com. The results compared on the basis of recall, precision and f-measure to check the accuracy of the student data. The importance of this research is to help improve the quality of educational research by providing more accurate results for researchers.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2107.10669
Accession Number: edsarx.2107.10669
Database: arXiv
More Details
Description not available.