SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums

Bibliographic Details
Title: SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums
Authors: Chen, Jiabin, Yuan, Rui, Garrigos, Guillaume, Gower, Robert M.
Source: Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR 151:279-318, 2022
Publication Year: 2021
Collection: Computer Science
Mathematics
Subject Terms: Mathematics - Optimization and Control, Mathematics - Numerical Analysis
More Details: We present a principled approach for designing stochastic Newton methods for solving finite sum optimization problems. Our approach has two steps. First, we re-write the stationarity conditions as a system of nonlinear equations that associates each data point to a new row. Second, we apply a Subsampled Newton Raphson method to solve this system of nonlinear equations. Using our approach, we develop a new Stochastic Average Newton (SAN) method, which is incremental by design, in that it requires only a single data point per iteration. It is also cheap to implement when solving regularized generalized linear models, with a cost per iteration of the order of the number of the parameters. We show through extensive numerical experiments that SAN requires no knowledge about the problem, neither parameter tuning, while remaining competitive as compared to classical variance reduced gradient methods (e.g. SAG and SVRG), incremental Newton and quasi-Newton methods (e.g. SNM, IQN).
Comment: Accepted at AISTATS 2022
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2106.10520
Accession Number: edsarx.2106.10520
Database: arXiv
More Details
Description not available.