Event reconstruction for KM3NeT/ORCA using convolutional neural networks

Bibliographic Details
Title: Event reconstruction for KM3NeT/ORCA using convolutional neural networks
Authors: Aiello, Sebastiano, Albert, Arnauld, Garre, Sergio Alves, Aly, Zineb, Ameli, Fabrizio, Andre, Michel, Androulakis, Giorgos, Anghinolfi, Marco, Anguita, Mancia, Anton, Gisela, Ardid, Miquel, Aublin, Julien, Bagatelas, Christos, Barbarino, Giancarlo, Baret, Bruny, Pree, Suzan Basegmez du, Bendahman, Meriem, Berbee, Edward, Bertin, Vincent, Biagi, Simone, Biagioni, Andrea, Bissinger, Matthias, Boettcher, Markus, Boumaaza, Jihad, Bouta, Mohammed, Bouwhuis, Mieke, Bozza, Cristiano, Branzas, Horea, Bruijn, Ronald, Brunner, Jürgen, Buis, Ernst-Jan, Buompane, Raffaele, Busto, Jose, Caiffi, Barbara, Calvo, David, Capone, Antonio, Carretero, Víctor, Castaldi, Paolo, Celli, Silvia, Chabab, Mohamed, Chau, Nhan, Chen, Andrew, Cherubini, Silvio, Chiarella, Vitaliano, Chiarusi, Tommaso, Circella, Marco, Cocimano, Rosanna, Coelho, Joao, Coleiro, Alexis, Molla, Marta Colomer, Coniglione, Rosa, Coyle, Paschal, Creusot, Alexandre, Cuttone, Giacomo, D'Onofrio, Antonio, Dallier, Richard, de Jong, Maarten, de Jong, Paul, De Palma, Mauro, de Wasseige, Gwenhaël, de Wolf, Els, Di Palma, Irene, Diaz, Antonio, Diego-Tortosa, Dídac, Distefano, Carla, Domi, Alba, Donà, Roberto, Donzaud, Corinne, Dornic, Damien, Dörr, Manuel, Drouhin, Doriane, Eberl, Thomas, Bojaddaini, Imad El, Elsaesser, Dominik, Enzenhöfer, Alexander, Fermani, Paolo, Ferrara, Giovanna, Filipovic, Miroslav, Filippini, Francesco, Fusco, Luigi Antonio, Gabella, Omar, Gal, Tamas, Soto, Alfonso Andres Garcia, Garufi, Fabio, Gatelet, Yoann, Geißelbrecht, Nicole, Gialanella, Lucio, Giorgio, Emidio, Gozzini, Sara Rebecca, Gracia, Rodrigo, Graf, Kay, Grasso, Dario, Grella, Giuseppe, Guidi, Carlo, Hallmann, Steffen, Hamdaoui, Hassane, Heijboer, Aart, Hekalo, Amar, Hernandez-Rey, Juan-Jose, Hofestädt, Jannik, Huang, Feifei, Ibnsalih, Walid Idrissi, Illuminati, Giulia, James, Clancy, Jung, Bouke Jisse, Kadler, Matthias, Kalaczyński, Piotr, Kalekin, Oleg, Katz, Uli, Chowdhury, Nafis Rezwan Khan, Kistauri, Giorgi, Koffeman, Els, Kooijman, Paul, Kouchner, Antoine, Kreter, Michael, Kulikovskiy, Vladimir, Lahmann, Robert, Larosa, Giuseppina, Breton, Remy Le, Leonardi, Ornella, Leone, Francesco, Leonora, Emanuele, Levi, Giuseppe, Lincetto, Massimiliano, Clark, Miles Lindsey, Lipreau, Thomas, Lonardo, Alessandro, Longhitano, Fabio, Coto, Daniel Lopez, Maderer, Lukas, Mańczak, Jerzy, Mannheim, Karl, Margiotta, Annarita, Marinelli, Antonio, Markou, Christos, Martin, Lilian, Martínez-Mora, Juan Antonio, Martini, Agnese, Marzaioli, Fabio, Mastroianni, Stefano, Mazzou, Safaa, Melis, Karel, Miele, Gennaro, Migliozzi, Pasquale, Migneco, Emilio, Mijakowski, Piotr, Palacios, Luis Salvador Miranda, Mollo, Carlos Maximiliano, Morganti, Mauro, Moser, Michael, Moussa, Abdelilah, Muller, Rasa, Musumeci, Mario, Nauta, Lodewijk, Navas, Sergio, Nicolau, Carlo Alessandro, Fearraigh, Brían Ó, Organokov, Mukharbek, Orlando, Angelo, Papalashvili, Gogita, Papaleo, Riccardo, Pastore, Cosimo, Paun, Alice, Pavalas, Gabriela Emilia, Pellegrino, Carmelo, Perrin-Terrin, Mathieu, Piattelli, Paolo, Pieterse, Camiel, Pikounis, Konstantinos, Pisanti, Ofelia, Poirè, Chiara, Popa, Vlad, Post, Maarten, Pradier, Thierry, Pühlhofer, Gerd, Pulvirenti, Sara, Rabyang, Omphile, Raffaelli, Fabrizio, Randazzo, Nunzio, Rapicavoli, Antonio, Razzaque, Soebur, Real, Diego, Reck, Stefan, Riccobene, Giorgio, Richer, Marc, Rivoire, Stephane, Rovelli, Alberto, Greus, Francisco Salesa, Samtleben, Dorothea Franziska Elisabeth, Losa, Agustín Sánchez, Sanguineti, Matteo, Santangelo, Andrea, Santonocito, Domenico, Sapienza, Piera, Schnabel, Jutta, Seneca, Jordan, Sgura, Irene, Shanidze, Rezo, Sharma, Ankur, Simeone, Francesco, Sinopoulou, Anna, Spisso, Bernardino, Spurio, Maurizio, Stavropoulos, Dimitris, Steijger, Jos, Stellacci, Simona Maria, Taiuti, Mauro, Tayalati, Yahya, Tenllado, Enrique, Thakore, Tarak, Tingay, Steven, Tzamariudaki, Ekaterini, Tzanetatos, Dimitrios, Berg, Ad van den, van der Knaap, Frits, van Eijk, Daan, Van Elewyck, Véronique, van Haren, Hans, Vannoye, Godefroy, Vasileiadis, George, Versari, Federico, Viola, Salvatore, Vivolo, Daniele, Wilms, Joern, Wojaczyński, Rafał, Zaborov, Dmitry, Zavatarelli, Sandra, Zegarelli, Angela, Zito, Daniele, Zornoza, Juan-de-Dios, Zúñiga, Juan, Zywucka, Natalia
Source: JINST 15 P10005 (2020)
Publication Year: 2020
Collection: Astrophysics
High Energy Physics - Experiment
Physics (Other)
Subject Terms: Astrophysics - Instrumentation and Methods for Astrophysics, High Energy Physics - Experiment, Physics - Instrumentation and Detectors
More Details: The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.
Document Type: Working Paper
DOI: 10.1088/1748-0221/15/10/P10005
Access URL: http://arxiv.org/abs/2004.08254
Accession Number: edsarx.2004.08254
Database: arXiv
More Details
DOI:10.1088/1748-0221/15/10/P10005