Development of High-Specificity Fluorescent Probes to Enable Cannabinoid Type 2 Receptor Studies in Living Cells

Bibliographic Details
Title: Development of High-Specificity Fluorescent Probes to Enable Cannabinoid Type 2 Receptor Studies in Living Cells
Authors: Sarott, Roman C., Westphal, Matthias V., Pfaff, Patrick, Korn, Claudia, Sykes, David A., Gazzi, Thais, Brennecke, Benjamin, Atz, Kenneth, Weise, Marie, Mostinski, Yelena, Hompluem, Pattarin, Koers, Eline, Miljuš, Tamara, Roth, Nicolas J., Asmelash, Hermon, Vong, Man C., Piovesan, Jacopo, Guba, Wolfgang, Rufer, Arne C., Kusznir, Eric A., Huber, Sylwia, Raposo, Catarina, Zirwes, Elisabeth A., Osterwald, Anja, Pavlovic, Anto, Moes, Svenja, Beck, Jennifer, Benito-Cuesta, Irene, Grande, Teresa, Ruiz de Martı́n Esteban, Samuel, Yeliseev, Alexei, Drawnel, Faye, Widmer, Gabriella, Holzer, Daniela, van der Wel, Tom, Mandhair, Harpreet, Yuan, Cheng-Yin, Drobyski, William R., Saroz, Yurii, Grimsey, Natasha, Honer, Michael, Fingerle, Jürgen, Gawrisch, Klaus, Romero, Julian, Hillard, Cecilia J., Varga, Zoltan V., van der Stelt, Mario, Pacher, Pal, Gertsch, Jürg, McCormick, Peter J., Ullmer, Christoph, Oddi, Sergio, Maccarrone, Mauro, Veprintsev, Dmitry B., Nazaré, Marc, Grether, Uwe, Carreira, Erick M.
Source: Journal of the American Chemical Society; October 2020, Vol. 142 Issue: 40 p16953-16964, 12p
Abstract: Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer’s disease.
Database: Supplemental Index
More Details
ISSN:00027863
15205126
DOI:10.1021/jacs.0c05587
Published in:Journal of the American Chemical Society
Language:English