Bibliographic Details
Title: |
AI-enabled left atrial volumetry in coronary artery calcium scans (AI-CACTM) predicts atrial fibrillation as early as one year, improves CHARGE-AF, and outperforms NT-proBNP: The multi-ethnic study of atherosclerosis. |
Authors: |
Naghavi, Morteza, Yankelevitz, David, Reeves, Anthony P., Budoff, Matthew J., Li, Dong, Atlas, Kyle, Zhang, Chenyu, Atlas, Thomas L., Lirette, Seth, Wasserthal, Jakob, Roy, Sion K., Henschke, Claudia, Wong, Nathan D., Defilippi, Christopher, Heckbert, Susan R., Greenland, Philip |
Source: |
Journal of Cardiovascular Computed Tomography; Jul2024, Vol. 18 Issue 4, p383-391, 9p |
Abstract: |
Coronary artery calcium (CAC) scans contain actionable information beyond CAC scores that is not currently reported. We have applied artificial intelligence-enabled automated cardiac chambers volumetry to CAC scans (AI-CACTM) to 5535 asymptomatic individuals (52.2% women, ages 45–84) that were previously obtained for CAC scoring in the baseline examination (2000–2002) of the Multi-Ethnic Study of Atherosclerosis (MESA). AI-CAC took on average 21 s per CAC scan. We used the 5-year outcomes data for incident atrial fibrillation (AF) and assessed discrimination using the time-dependent area under the curve (AUC) of AI-CAC LA volume with known predictors of AF, the CHARGE-AF Risk Score and NT-proBNP. The mean follow-up time to an AF event was 2.9 ± 1.4 years. At 1,2,3,4, and 5 years follow-up 36, 77, 123, 182, and 236 cases of AF were identified, respectively. The AUC for AI-CAC LA volume was significantly higher than CHARGE-AF for Years 1, 2, and 3 (0.83 vs. 0.74, 0.84 vs. 0.80, and 0.81 vs. 0.78, respectively, all p < 0.05), but similar for Years 4 and 5, and significantly higher than NT-proBNP at Years 1–5 (all p < 0.01), but not for combined CHARGE-AF and NT-proBNP at any year. AI-CAC LA significantly improved the continuous Net Reclassification Index for prediction of AF over years 1–5 when added to CHARGE-AF Risk Score (0.60, 0.28, 0.32, 0.19, 0.24), and NT-proBNP (0.68, 0.44, 0.42, 0.30, 0.37) (all p < 0.01). AI-CAC LA volume enabled prediction of AF as early as one year and significantly improved on risk classification of CHARGE-AF Risk Score and NT-proBNP. [ABSTRACT FROM AUTHOR] |
|
Copyright of Journal of Cardiovascular Computed Tomography is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Supplemental Index |