Bibliographic Details
Title: |
pH-dependent modulation of intracellular free magnesium ions with ionselective electrodes in papillary muscle of guinea pig. |
Authors: |
Shang-Jin Kim, In-Gook Cho, Hyung-Sub Kang, Jin-Shang Kim |
Source: |
Journal of Veterinary Science; 2006, Vol. 7 Issue 1, p31-36, 6p, 5 Graphs |
Abstract: |
A change in pH can alter the intracellular concentration of electrolytes such as intracellular Ca2+and Na2+ ([Na+]i) that are important for the cardiac function. For the determination of the role of pH in the cardiac magnesium homeostasis, the intracellular Mg2+ concentration ([Mg2+]i), membrane potential and contraction in the papillary muscle of guinea pigs using ion-selective electrodes changing extracellular pH ([pH]o) or intracellular pH ([pH]i) were measured in this study. A high CO2-induced low [pH]o causes a significant increase in the [Mg2+]i and [Na+]i, which was accompanied by a decrease in the membrane potential and twitch force. The high [pH]o had the opposite effect. These effects were reversible in both the beating and quiescent muscles. The low [pH]o-induced increase in [Mg2+]i occurred in the absence of [Mg2+]o. The [Mg2+]i was increased by the low [pH]i induced by propionate. The [Mg2+]i was increased by the low [pH]i induced by NH4Cl-prepulse and decreased by the recovery of [pH]i induced by the removal of NH4Cl. These results suggest that the pH can modulate [Mg2+]i with a reverse relationship in heart, probably by affecting the intracellular Mg2+ homeostasis, but not by Mg2+ transport across the sarcolemma. [ABSTRACT FROM AUTHOR] |
|
Copyright of Journal of Veterinary Science is the property of Korean Society of Veterinary Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Supplemental Index |