Bibliographic Details
Title: |
Assessment of MODIS and VIIRS Ice Surface Temperature Products over the Antarctic Ice Sheet. |
Authors: |
Shi, Chenlie, Wang, Ninglian, Wu, Yuwei, Zhang, Quan, Reijmer, Carleen H., Smeets, Paul C. J. P. |
Source: |
Remote Sensing; Mar2025, Vol. 17 Issue 6, p955, 20p |
Subject Terms: |
MODIS (Spectroradiometer), ANTARCTIC ice, REMOTE sensing, ATMOSPHERIC radiation, ICE sheets |
Abstract: |
The ice surface temperature (IST) derived from thermal infrared remote sensing is crucial for accurately monitoring ice or snow surface temperatures in the polar region. Generally, the remote sensing IST needs to be validated by the in situ IST to ensure its accuracy. However, due to the limited availability of in situ IST measurements, previous studies in the validation of remote sensing ISTs are scarce in the Antarctic ice sheet. This study utilizes ISTs from eight broadband radiation stations to assess the accuracy of the latest-released Moderate Resolution Imaging Spectroradiometer (MODIS) IST and Visible Infrared Imager Radiometer Suite (VIIRS) IST products, which were derived from two different algorithms, the Split-Window (SW-based) algorithm and the Temperature–Emissivity Separation (TES-based) algorithm, respectively. This study also explores the sources of uncertainty in the validation process. The results reveal prominent errors when directly validating remote sensing ISTs with the in situ ISTs, which can be attributed to incorrect cloud detection due to the similar spectral characteristics of cloud and snow. Hence, cloud pixels are misclassified as clear pixels in the satellite cloud mask during IST validation, which emphasizes the severe cloud contamination of remote sensing IST products. By using a cloud index (n) to remove the cloud contamination pixels in the remote sensing IST products, the overall uncertainties for the four products are about 2 to 3 K, with the maximum uncertainty (RMSE) reduced by 3.51 K and the bias decreased by 1.26 K. Furthermore, a progressive cold bias in the validation process was observed with decreasing temperature, likely due to atmospheric radiation between the radiometer and the snow surface being neglected in previous studies. Lastly, this study found that the cloud mask errors of satellites are more pronounced during the winter compared to that in summer, highlighting the need for caution when directly using remote sensing IST products, particularly during the polar night. [ABSTRACT FROM AUTHOR] |
|
Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Complementary Index |
Full text is not displayed to guests. |
Login for full access.
|