Bibliographic Details
Title: |
Inhibiting CFTR through inh-172 in primary neutrophils reveals CFTR-specific functional defects. |
Authors: |
Da Silva Cunha, Ana LĂșcia, Blanter, Marfa, Renders, Janne, Gouwy, Mieke, Lorent, Natalie, Boon, Mieke, Struyf, Sofie, Carlon, Marianne S. |
Source: |
Scientific Reports; 12/28/2024, Vol. 14 Issue 1, p1-17, 17p |
Subject Terms: |
LEUKOCYTE elastase, MEDICAL sciences, ION channels, EPITHELIAL cells, CYSTIC fibrosis transmembrane conductance regulator, NEUTROPHILS |
Abstract: |
The lungs of people with cystic fibrosis (PwCF) are characterized by recurrent bacterial infections and inflammation. Infections in cystic fibrosis (CF) are left unresolved despite excessive neutrophil infiltration. The role of CFTR in neutrophils is not fully understood. In this study, we aimed to assess which antimicrobial functions are directly impaired by loss of CFTR function in neutrophils. In order to do so, we used a specific inhibitor of CFTR ion channel activity, inh-172. CF neutrophils from PwCF harboring severe CFTR mutations were additionally isolated to further discern CFTR-specific functional defects. We evaluated phagocytosis, reactive oxygen species (ROS) production, neutrophil elastase (NE) and myeloperoxidase (MPO) exocytosis and bacterial killing. The inh-172 model identified decreased acidification of the phagosome, increased bacterial survival and decreased ROS production upon stimulation. In PwCF neutrophils, we observed reduced degranulation of both NE and MPO. When co-culturing neutrophils with CF sputum supernatant and airway epithelial cells, the extent of phagocytosis was reduced, underscoring the importance of recreating an inflammatory environment as seen in PwCF lungs to model immune responses in vitro. Despite low CFTR expression in blood neutrophils, functional defects were found in inh-172-treated and CF neutrophils. The inh-172 model disregards donor variability and allows pinpointing neutrophil functions directly impaired by dysfunctional CFTR. [ABSTRACT FROM AUTHOR] |
|
Copyright of Scientific Reports is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Complementary Index |
Full text is not displayed to guests. |
Login for full access.
|