StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning.

Bibliographic Details
Title: StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning.
Authors: Rukh, Gul, Akbar, Shahid, Rehman, Gauhar, Alarfaj, Fawaz Khaled, Zou, Quan
Source: BMC Bioinformatics; 8/4/2024, Vol. 25 Issue 1, p1-22, 22p
Subject Terms: DISCRETE wavelet transforms, INDEPENDENT sets, DRUG design, FREE radicals, OXIDATIVE stress
Abstract: Background: Antioxidant proteins are involved in several biological processes and can protect DNA and cells from the damage of free radicals. These proteins regulate the body's oxidative stress and perform a significant role in many antioxidant-based drugs. The current invitro-based medications are costly, time-consuming, and unable to efficiently screen and identify the targeted motif of antioxidant proteins. Methods: In this model, we proposed an accurate prediction method to discriminate antioxidant proteins namely StackedEnC-AOP. The training sequences are formulation encoded via incorporating a discrete wavelet transform (DWT) into the evolutionary matrix to decompose the PSSM-based images via two levels of DWT to form a Pseudo position-specific scoring matrix (PsePSSM-DWT) based embedded vector. Additionally, the Evolutionary difference formula and composite physiochemical properties methods are also employed to collect the structural and sequential descriptors. Then the combined vector of sequential features, evolutionary descriptors, and physiochemical properties is produced to cover the flaws of individual encoding schemes. To reduce the computational cost of the combined features vector, the optimal features are chosen using Minimum redundancy and maximum relevance (mRMR). The optimal feature vector is trained using a stacking-based ensemble meta-model. Results: Our developed StackedEnC-AOP method reported a prediction accuracy of 98.40% and an AUC of 0.99 via training sequences. To evaluate model validation, the StackedEnC-AOP training model using an independent set achieved an accuracy of 96.92% and an AUC of 0.98. Conclusion: Our proposed StackedEnC-AOP strategy performed significantly better than current computational models with a ~ 5% and ~ 3% improved accuracy via training and independent sets, respectively. The efficacy and consistency of our proposed StackedEnC-AOP make it a valuable tool for data scientists and can execute a key role in research academia and drug design. [ABSTRACT FROM AUTHOR]
Copyright of BMC Bioinformatics is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Full text is not displayed to guests.
More Details
ISSN:14712105
DOI:10.1186/s12859-024-05884-6
Published in:BMC Bioinformatics
Language:English