Non-destructive quantification of key quality characteristics in individual grapevine berries using near-infrared spectroscopy.

Bibliographic Details
Title: Non-destructive quantification of key quality characteristics in individual grapevine berries using near-infrared spectroscopy.
Authors: Cornehl, Lucie, Gauweiler, Pascal, Xiaorong Zheng, Krause, Julius, Schwander, Florian, Töpfer, Reinhard, Gruna, Robin, Kicherer, Anna
Source: Frontiers in Plant Science; 2024, p1-16, 16p
Subject Terms: BERRIES, NEAR infrared spectroscopy, PARTIAL least squares regression, GRAPES, HIGH performance liquid chromatography, VITIS vinifera, WINE districts
Abstract: It is crucial for winegrowers to make informed decisions about the optimum time to harvest the grapes to ensure the production of premium wines. Global warming contributes to decreasing acidity and increasing sugar levels in grapes, resulting in bland wines with high contents of alcohol. Predicting quality in viticulture is thus pivotal. To assess the average ripeness, typically a sample of one hundred berries representative for the entire vineyard is collected. However, this process, along with the subsequent detailed must analysis, is time consuming and expensive. This study focusses on predicting essential quality parameters like sugar and acid content in Vitis vinifera (L.) varieties 'Chardonnay', 'Riesling', 'Dornfelder', and 'Pinot Noir'. A small near-infrared spectrometer was used measuring non-destructively in the wavelength range from 1 100 nm to 1 350 nm while the reference contents were measured using high-performance liquid chromatography. Chemometric models were developed employing partial least squares regression and using spectra of all four grapevine varieties, spectra gained from berries of the same colour, or from the individual varieties. The models exhibited high accuracy in predicting main quality-determining parameters in independent test sets. On average, the model regression coefficients exceeded 93% for the sugars fructose and glucose, 86% for malic acid, and 73% for tartaric acid. Using these models, prediction accuracies revealed the ability to forecast individual sugar contents within an range of ± 6.97 g/L to ± 10.08 g/L, and malic acid within ± 2.01 g/L to ± 3.69 g/L. This approach indicates the potential to develop robust models by incorporating spectra from diverse grape varieties and berries of different colours. Such insight is crucial for the potential widespread adoption of a handheld near-infrared sensor, possibly integrated into devices used in everyday life, like smartphones. A server-side and cloud-based solution for pre-processing and modelling could thus avoid pitfalls of using near-infrared sensors on unknown varieties and in diverse wine-producing regions. [ABSTRACT FROM AUTHOR]
Copyright of Frontiers in Plant Science is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
More Details
ISSN:1664462X
DOI:10.3389/fpls.2024.1386951
Published in:Frontiers in Plant Science
Language:English