Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy.

Bibliographic Details
Title: Axial de-scanning using remote focusing in the detection arm of light-sheet microscopy.
Authors: Dibaji, Hassan, Kazemi Nasaban Shotorban, Ali, Grattan, Rachel M., Lucero, Shayna, Schodt, David J., Lidke, Keith A., Petruccelli, Jonathan, Lidke, Diane S., Liu, Sheng, Chakraborty, Tonmoy
Source: Nature Communications; 6/12/2024, Vol. 15 Issue 1, p1-11, 11p
Subject Terms: MICROSCOPY, MICROSCOPES, FLUORESCENCE, SCANNING tunneling microscopy, CONFOCAL microscopy
Abstract: Rapid, high-resolution volumetric imaging without moving heavy objectives or disturbing delicate samples remains challenging. Pupil-matched remote focusing offers a promising solution for high NA systems, but the fluorescence signal's incoherent and unpolarized nature complicates its application. Thus, remote focusing is mainly used in the illumination arm with polarized laser light to improve optical coupling. Here, we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light, lets them pass through the remote focusing module separately, and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks with an axial range of 70 μm and camera-limited acquisition speed. Owing to its general nature, we believe this technique will find its application in many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging, such as confocal, 2-photon, and light sheet variants. The authors propose a method for de-scanning the axial focus movement in the detection arm of a fluorescence microscope, enabling aberration-free, multi-color, volumetric imaging. They acquire dual-colour image stacks with an axial range of 70 μm and camera-limited acquisition speed. [ABSTRACT FROM AUTHOR]
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
More Details
ISSN:20411723
DOI:10.1038/s41467-024-49291-0
Published in:Nature Communications
Language:English