Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties.

Bibliographic Details
Title: Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties.
Authors: Milić Komić, Sonja, Živanović, Bojana, Dumanović, Jelena, Kolarž, Predrag, Sedlarević Zorić, Ana, Morina, Filis, Vidović, Marija, Veljović Jovanović, Sonja
Source: International Journal of Molecular Sciences; Oct2023, Vol. 24 Issue 20, p15350, 18p
Subject Terms: BASIL, CULTIVARS, OXIDANT status, HYDROXYCINNAMIC acids, IRRADIATION, CAFFEIC acid
Abstract: Three basil plant varieties (Ocimum basilicum var. Genovese, Ocimum × citriodorum, and Ocimum basilicum var. purpurascens) were grown under moderate light (about 300 µmol photons m−2 s−1) in a glasshouse or growth chamber and then either transferred to an open field (average daily dose: 29.2 kJ m−2 d−1) or additionally exposed to UV-B irradiation in a growth chamber (29.16 kJ m−2 d−1), to reveal the variety-specific and light-specific acclimation responses. Total antioxidant capacity (TAC), phenolic profile, ascorbate content, and class III peroxidase (POD) activity were used to determine the antioxidant status of leaves under all four light regimes. Exposure to high solar irradiation at the open field resulted in an increase in TAC, total hydroxycinnamic acids (HCAs, especially caffeic acid), flavonoids, and epidermal UV-absorbing substances in all three varieties, as well as a two-fold increase in the leaf dry/fresh weight ratio. The supplemental UV-B irradiation induced preferential accumulation of HCAs (rosmarinic acid) over flavonoids, increased TAC and POD activity, but decreased the ascorbate content in the leaves, and inhibited the accumulation of epidermal flavonoids in all basil varieties. Furthermore, characteristic leaf curling and UV-B-induced inhibition of plant growth were observed in all basil varieties, while a pro-oxidant effect of UV-B was indicated with H2O2 accumulation in the leaves and spotty leaf browning. The extent of these morphological changes, and oxidative damage depended on the basil cultivar, implies a genotype-specific tolerance mechanism to high doses of UV-B irradiation. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Molecular Sciences is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Full text is not displayed to guests.
More Details
ISSN:16616596
DOI:10.3390/ijms242015350
Published in:International Journal of Molecular Sciences
Language:English