Storylines for unprecedented heatwaves based on ensemble boosting.

Bibliographic Details
Title: Storylines for unprecedented heatwaves based on ensemble boosting.
Authors: Fischer, E. M., Beyerle, U., Bloin-Wibe, L., Gessner, C., Humphrey, V., Lehner, F., Pendergrass, A. G., Sippel, S., Zeder, J., Knutti, R.
Source: Nature Communications; 8/22/2023, Vol. 14 Issue 1, p1-11, 11p
Subject Terms: HEAT waves (Meteorology), CLIMATE extremes, ATMOSPHERIC models, SCIENTIFIC community
Geographic Terms: PARIS (France)
Abstract: Recent temperature extremes have shattered previously observed records, reaching intensities that were inconceivable before the events. Could the possibility of an event with such unprecedented intensity as the 2021 Pacific Northwest heatwave have been foreseen, based on climate model information available before the event? Could the scientific community have quantified its potential intensity based on the current generation of climate models? Here, we demonstrate how an ensemble boosting approach can be used to generate physically plausible storylines of a heatwave hotter than observed in the Pacific Northwest. We also show that heatwaves of much greater intensities than ever observed are possible in other locations like the Greater Chicago and Paris regions. In order to establish confidence in storylines of 'black swan'-type events, different lines of evidence need to be combined along with process understanding to make this information robust and actionable for stakeholders. Climate model ensemble boosting can yield physically coherent storylines for record-shattering climate extremes such as the 2021 Pacific Northwest heatwave. Combining information from storyline approaches with process understanding can inform planning for future extremes of unprecedented intensity. [ABSTRACT FROM AUTHOR]
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
More Details
ISSN:20411723
DOI:10.1038/s41467-023-40112-4
Published in:Nature Communications
Language:English