Michelson Interferometer for Passive Atmospheric Sounding Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía version 8 retrieval of nitric oxide and lower-thermospheric temperature.

Bibliographic Details
Title: Michelson Interferometer for Passive Atmospheric Sounding Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía version 8 retrieval of nitric oxide and lower-thermospheric temperature.
Authors: Funke, Bernd, García-Comas, Maya, Glatthor, Norbert, Grabowski, Udo, Kellmann, Sylvia, Kiefer, Michael, Linden, Andrea, López-Puertas, Manuel, Stiller, Gabriele P., von Clarmann, Thomas
Source: Atmospheric Measurement Techniques; 2023, Vol. 16 Issue 8, p2167-2196, 30p
Subject Terms: METEOROLOGICAL research, ATMOSPHERIC acoustics, MICHELSON interferometer, RADIANCE, CLIMATE research, THERMOSPHERE, NITRIC oxide
Company/Entity: EUROPEAN Space Agency, NAVAL Research Laboratory (U.S.)
Abstract: New global nitric oxide (NO) volume mixing ratio and lower-thermospheric temperature data products, retrieved from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) spectra with the Institute of Meteorology and Climate Research and Instituto de Astrofísica de Andalucía (IMK-IAA) MIPAS data processor, have been released. The dataset covers the entire Envisat mission lifetime and includes retrieval results from all MIPAS observation modes. The data are based on European Space Agency (ESA) version 8 calibration and were processed using an improved retrieval approach compared to previous versions, specifically regarding the choice and construction of the a priori and atmospheric parameter profiles, the treatment of horizontal inhomogeneities, the treatment of the radiance offset correction, and the selection of optimized numerical settings. NO retrieval errors in individual observations are dominated by measurement noise and range from 5 % to 50 % in the stratosphere and thermosphere and reach 40 % to 90 % in the mesosphere. Systematic errors are typically within 10 %–30 %. Lower-thermospheric temperature errors are 5 to 50 K with a systematic component of around 20 K, the latter being dominated by non-thermodynamic equilibrium (non-LTE)-related uncertainties. NO data from different observation modes are consistent within 5 %–10 %. MIPAS version 8 temperatures have a better representation of the diurnal tide in the lower thermosphere compared to previous data versions. The new MIPAS temperatures are systematically warmer than results from the empirical US Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar (NRLMSIS) version 2.0 model by 30 to 80 K in the 100–120 km region and are colder above. [ABSTRACT FROM AUTHOR]
Copyright of Atmospheric Measurement Techniques is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Full text is not displayed to guests.
More Details
ISSN:18671381
DOI:10.5194/amt-16-2167-2023
Published in:Atmospheric Measurement Techniques
Language:English