Microplastics: A Matter of the Heart (and Vascular System).

Bibliographic Details
Title: Microplastics: A Matter of the Heart (and Vascular System).
Authors: Persiani, Elisa, Cecchettini, Antonella, Ceccherini, Elisa, Gisone, Ilaria, Morales, Maria Aurora, Vozzi, Federico
Source: Biomedicines; Feb2023, Vol. 11 Issue 2, p264, 17p
Subject Terms: CARDIOVASCULAR system, MICROPLASTICS, PLASTIC scrap, BLOOD proteins, HEART
Abstract: Plastic use dramatically increased over the past few years. Besides obvious benefits, the consequent plastic waste and mismanagement in disposal have caused ecological problems. Plastic abandoned in the environment is prone to segregation, leading to the generation of microplastics (MPs) and nanoplastics (NPs), which can reach aquatic and terrestrial organisms. MPs/NPs in water can access fish's bodies through the gills, triggering an inflammatory response in loco. Furthermore, from the gills, plastic fragments can be transported within the circulatory system altering blood biochemical parameters and hormone levels and leading to compromised immunocompetence and angiogenesis. In addition, it was also possible to observe an unbalanced ROS production, damage in vascular structure, and enhanced thrombosis. MPs/NPs led to cardiotoxicity, pericardial oedema, and impaired heart rate in fish cardiac tissue. MPs/NPs effects on aquatic organisms pose serious health hazards and ecological consequences because they constitute the food chain for humans. Once present in the mammalian body, plastic particles can interact with circulating cells, eliciting an inflammatory response, with genotoxicity and cytotoxicity of immune cells, enhanced haemolysis, and endothelium adhesion. The interaction of MPs/NPs with plasma proteins allows their transport to distant organs, including the heart. As a consequence of plastic fragment internalisation into cardiomyocytes, oxidative stress was increased, and metabolic parameters were altered. In this scenario, myocardial damage, fibrosis and impaired electrophysiological values were observed. In summary, MPs/NPs are an environmental stressor for cardiac function in living organisms, and a risk assessment of their influence on the cardiovascular system certainly merits further analysis. [ABSTRACT FROM AUTHOR]
Copyright of Biomedicines is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
More Details
ISSN:22279059
DOI:10.3390/biomedicines11020264
Published in:Biomedicines
Language:English