Title: |
Hepatic Polarized Differentiation Promoted the Maturity and Liver Function of Human Embryonic Stem Cell-Derived Hepatocytes via Activating Hippo and AMPK Signaling Pathways. |
Authors: |
Wang, Jue, Situ, Ping, Chen, Sen, Wu, Haibin, Zhang, Xueyan, Liu, Shoupei, Wang, Yiyu, Xie, Jinghe, Chen, Honglin, Duan, Yuyou |
Source: |
Cells (2073-4409); Dec2022, Vol. 11 Issue 24, p4117, 20p |
Subject Terms: |
LIVER cells, LIVER, BIOLOGICAL transport, GENE expression profiling, LIVER regeneration, CELL physiology, DRUG metabolism, EMBRYONIC stem cells |
Abstract: |
Hepatocytes exhibit a multi-polarized state under the in vivo physiological environment, however, human embryonic stem cell-derived hepatocytes (hEHs) rarely exhibit polarity features in a two-dimensional (2D) condition. Thus, we hypothesized whether the polarized differentiation might enhance the maturity and liver function of hEHs. In this study, we obtained the polarized hEHs (phEHs) by using 2D differentiation in conjunct with employing transwell-based polarized culture. Our results showed that phEHs directionally secreted albumin, urea and bile acids, and afterward, the apical membrane and blood–bile barrier (BBIB) were identified to form in phEHs. Moreover, phEHs exhibited a higher maturity and capacitity of cellular secretory and drug metabolism than those of non-phEHs. Through transcriptome analysis, it was found that the polarized differentiation induced obvious changes in gene expression profiles of cellular adhesion and membrane transport in hEHs. Our further investigation revealed that the activation of Hippo and AMPK signaling pathways made contributions to the regulation of function and cellular polarity in phEHs, further verifying that the liver function of hEHs was closely related with their polarization state. These results not only demonstrated that the polarized differentiation enhanced the maturity and liver function of hEHs, but also identified the molecular targets that regulated the polarization state of hEHs. [ABSTRACT FROM AUTHOR] |
|
Copyright of Cells (2073-4409) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Complementary Index |
Full text is not displayed to guests. |
Login for full access.
|