Dynamic Visualization of TGF-β/SMAD3 Transcriptional Responses in Single Living Cells.

Bibliographic Details
Title: Dynamic Visualization of TGF-β/SMAD3 Transcriptional Responses in Single Living Cells.
Authors: Marvin, Dieuwke L., You, Li, Bornes, Laura, van Dinther, Maarten, Peters, Niek, Dang, Hao, Hakuno, Sarah K., Hornsveld, Marten, Kranenburg, Onno, van Rheenen, Jacco, Rohling, Jos H. T., Chien, Miao-Ping, ten Dijke, Peter, Ritsma, Laila
Source: Cancers; May2022, Vol. 14 Issue 10, p2508-N.PAG, 21p
Subject Terms: CELLULAR signal transduction, GENE expression, TUMORS, TRANSCRIPTION factors
Abstract: Simple Summary: How a single cytokine can induce a variety of cellular responses in the same cell or in different cells is a longstanding question. Transforming growth factor β (TGF-β) is a prototypical multifunctional cytokine of which biological responses are highly dependent on in a cellular context. TGF-β signals via intracellular SMAD transcription factors, and the duration and intensity of SMAD activation are key determinants for the responses that are elicited by TGF-β. To visualize the TGF-β signaling kinetics, we developed a dynamic TGF-β/SMAD3 transcriptional reporter using a quickly folded and highly unstable green florescent protein. We demonstrate the specificity and sensitivity of this reporter and its wide application to monitor dynamic TGF-β-induced responses in cells cultured on plastic dishes, and in living animals. This tool allows for the analysis of TGF-β signaling at a single living cell level, and allows for the discovery of dynamic TGF-β SMAD- induced transcriptional responses in multi-step biological processes. Transforming growth factor-β (TGF-β) signaling is tightly controlled in duration and intensity during embryonic development and in the adult to maintain tissue homeostasis. To visualize the TGF-β/SMAD3 signaling kinetics, we developed a dynamic TGF-β/SMAD3 transcriptional fluorescent reporter using multimerized SMAD3/4 binding elements driving the expression of a quickly folded and highly unstable GFP protein. We demonstrate the specificity and sensitivity of this reporter and its wide application to monitor dynamic TGF-β/SMAD3 transcriptional responses in both 2D and 3D systems in vitro, as well as in vivo, using live-cell and intravital imaging. Using this reporter in B16F10 cells, we observed single cell heterogeneity in response to TGF-β challenge, which can be categorized into early, late, and non-responders. Because of its broad application potential, this reporter allows for new discoveries into how TGF-β/SMAD3-dependent transcriptional dynamics are affected during multistep and reversible biological processes. [ABSTRACT FROM AUTHOR]
Copyright of Cancers is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Full text is not displayed to guests.
More Details
ISSN:20726694
DOI:10.3390/cancers14102508
Published in:Cancers
Language:English