Title: |
Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins. |
Authors: |
Buchou, Charlie, Laud-Duval, Karine, van der Ent, Wietske, Grossetête, Sandrine, Zaidi, Sakina, Gentric, Géraldine, Corbé, Maxime, Müller, Kévin, Del Nery, Elaine, Surdez, Didier, Delattre, Olivier |
Source: |
Cancers; May2022, Vol. 14 Issue 9, pN.PAG-N.PAG, 24p |
Subject Terms: |
STATINS (Cardiovascular agents), IN vitro studies, BIOLOGICAL models, METABOLISM, APOPTOSIS, CELL lines, REACTIVE oxygen species, HYDROXY acids, CARRIER proteins, EWING'S sarcoma, ENZYME inhibitors, LIPID peroxidation (Biology), PHARMACODYNAMICS |
Abstract: |
Simple Summary: The objective of this project was to search for new dependencies in Ewing sarcoma, a deadly disease for which new therapeutic approaches are urgently needed. A pharmacological screening of off-patent approved drugs (FDA agency) and the investigation of downstream targets of EGR2 were performed. The two approaches showed the MVA pathway as a major dependency in Ewing sarcoma and statin, an inhibitor of this pathway, as a potential new therapeutic agent for the treatment of Ewing sarcoma. Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease. [ABSTRACT FROM AUTHOR] |
|
Copyright of Cancers is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Complementary Index |
Full text is not displayed to guests. |
Login for full access.
|