The aerosol-climate model ECHAM6.3-HAM2.3: Aerosol evaluation.

Bibliographic Details
Title: The aerosol-climate model ECHAM6.3-HAM2.3: Aerosol evaluation.
Authors: Tegen, Ina, Neubauer, David, Ferrachat, Sylvaine, Drian, Colombe Siegenthaler-Le, Bey, Isabelle, Schutgens, Nick, Stier, Philip, Watson-Parris, Duncan, Stanelle, Tanja, Schmidt, Hauke, Rast, Sebastian, Kokkola, Harri, Schultz, Martin, Schroeder, Sabine, Daskalakis, Nikos, Barthel, Stefan, Heinold, Bernd, Lohmann, Ulrike
Source: Geoscientific Model Development Discussions; 2018, p1-54, 54p
Subject Terms: ATMOSPHERIC aerosols, ATMOSPHERIC models
Abstract: We introduce and evaluate the aerosol simulations with the global aerosol-climate model ECHAM6.3-HAM2.3, which is the aerosol component of the fully coupled aerosol-chemistry-climate model ECHAM-HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse mode aerosol concentrations to some extent, so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM-HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol-climate interactions in a changing climate. [ABSTRACT FROM AUTHOR]
Copyright of Geoscientific Model Development Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
More Details
ISSN:19919611
DOI:10.5194/gmd-2018-235
Published in:Geoscientific Model Development Discussions
Language:English