Discovery of Organophosphate Resistance-Related Genes Associated With Well-known Resistance Mechanisms of Plutella xylostella (L.) (Lepidoptera: Plutellidae) by RNA-Seq.

Bibliographic Details
Title: Discovery of Organophosphate Resistance-Related Genes Associated With Well-known Resistance Mechanisms of Plutella xylostella (L.) (Lepidoptera: Plutellidae) by RNA-Seq.
Authors: Ju-Chun Hsu, Yu-Yu Lin, Chia-Che Chang, Kuo-Hsun Hua, Mei-Ju May Chen, Li-Hsin Huang, Chien-Yu Chen
Source: Journal of Economic Entomology; Jun2016, Vol. 109 Issue 3, p1378-1386, 9p
Subject Terms: DIAMONDBACK moth, ORGANOPHOSPHORUS insecticides, INSECTICIDE resistance, RNA sequencing, GENETIC transcription, INSECTS
Abstract: Pesticide resistance poses many challenges for pest control, particularly for destructive pests such as diamondback moths (Plutella xylostella). Organophosphates have been used in the field since the 1950s, leading to selection for resistance-related gene variants and the development of resistance to new insecticides in the diamondback moth. Identifying actual and potential genes involved in resistance could offer solutions for control. This study established resistant diamondback moth strains from two different collections using mevinphos. Two sets of transcriptome sequencing (RNA-Seq) data were generated for pairs of mevinphos-resistant versus susceptible (wild-type) strains. One susceptible strain containing 14 giga base pairs was assembled into a reference-based assembly using published scaffold sequences as reference. Differential expression data between resistant and susceptible strains revealed 944 transcripts (803 with annotations) showing upregulation and 427 transcripts (150 with annotations) showing downregulation. Around 6.8% of the differential expression transcripts (65) could be categorized as associated with well-known resistance mechanisms such as penetration, detoxification, and behavior response; of these 65 transcripts, 38 showed upregulation, and 12 relating to penetration were upregulated when the transcripts of 19 cytochrome P450s, 2 zeta-class glutathione S-transferases, and 4 ATP-binding cassette transporters showed upregulation. In addition, 11 groups of transcripts related to olfactory perception appeared to be downregulated in trade-off situations. Quantitative polymerase chain reaction expression results were consistent with RNA-Seq data. Possible roles of these differentially expressed genes in resistance mechanisms are discussed in this study. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Economic Entomology is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
More Details
ISSN:00220493
DOI:10.1093/jee/tow070
Published in:Journal of Economic Entomology
Language:English