Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor.

Bibliographic Details
Title: Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate/insulin-like growth factor II receptor.
Authors: Yuji Ishibashi1, Takanori Matsui1, Sayaka Maeda1, Yuichiro Higashimoto2, Sho-ichi Yamagishi1 shoichi@med.kurume-u.ac.jp
Source: Cardiovascular Diabetology. 2013, Vol. 12 Issue 1, p1-9. 9p. 1 Diagram, 3 Graphs.
Subject Terms: *CD26 antigen, *DIABETES, *ENDOTHELIAL cells, *GENE expression, *ACETYLCYSTEINE, *GROWTH factors, *HYDROGEN peroxide
Abstract: Background: Advanced glycation end products (AGEs) and receptor RAGE interaction play a role in diabetic vascular complications. Inhibition of dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target for type 2 diabetes. However, the role of DPP-4 in AGE-induced endothelial cell (EC) damage remains unclear. Methods: In this study, we investigated the effects of DPP-4 on reactive oxygen species (ROS) generation and RAGE gene expression in ECs. We further examined whether an inhibitor of DPP-4, linagliptin inhibited AGE-induced soluble DPP-4 production, ROS generation, RAGE, intercellular adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1) gene expression in ECs. Results: DPP-4 dose-dependently increased ROS generation and RAGE gene expression in ECs, which were prevented by linagliptin. Mannose 6-phosphate (M6P) and antibodies (Ab) raised against M6P/insulin-like growth factor II receptor (M6P/IGF-IIR) completely blocked the ROS generation in DPP-4-exposed ECs, whereas surface plasmon resonance revealed that DPP-4 bound to M6P/IGF-IIR at the dissociation constant of 3.59 x 10-5M. AGEs or hydrogen peroxide increased soluble DPP-4 production by ECs, which was prevented by N-acetylcysteine, RAGE-Ab or linagliptin. Linagliptin significantly inhibited the AGE-induced ROS generation, RAGE, ICAM-1 and PAI-1 gene expression in ECs. Conclusions: The present study suggests that AGE-RAGE-induced ROS generation stimulates the release of DPP-4 from ECs, which could in turn act on ECs directly via the interaction with M6P/IGF-IIR, further potentiating the deleterious effects of AGEs. The blockade by linagliptin of positive feedback loop between AGE-RAGE axis and DPP-4 might be a novel therapeutic target for vascular injury in diabetes. [ABSTRACT FROM AUTHOR]
Copyright of Cardiovascular Diabetology is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
More Details
ISSN:14752840
DOI:10.1186/1475-2840-12-125
Published in:Cardiovascular Diabetology
Language:English