Identification of Active Markers of Chinese Formula Yupingfeng San by Network Pharmacology and HPLC-Q-TOF–MS/MS Analysis in Experimental Allergic Rhinitis Models of Mice and Isolated Basophilic Leukemia Cell Line RBL-2H3.

Bibliographic Details
Title: Identification of Active Markers of Chinese Formula Yupingfeng San by Network Pharmacology and HPLC-Q-TOF–MS/MS Analysis in Experimental Allergic Rhinitis Models of Mice and Isolated Basophilic Leukemia Cell Line RBL-2H3.
Authors: Li, Xinqi1 (AUTHOR), Zhao, Caining1 (AUTHOR), Qi, Jin1 (AUTHOR) qijin2006@163.com
Source: Pharmaceuticals (14248247). Apr2025, Vol. 18 Issue 4, p540. 26p.
Subject Terms: *TIME-of-flight mass spectrometry, *ALLERGIC rhinitis, *MOLECULAR docking, *NATURAL products, *FORMONONETIN
Abstract: Background: Yupingfeng San (YPFS) is a classic formula for treating allergic rhinitis (AR), which is composed of Astragalus mongholicus Bunge (AST), Atractylodes macrocephala Koidz (AMR), and Saposhni-kovia divaricata (Turcz.) Schischk (SR) at a ratio of 3:1:1. However, the potential bioactive components of YPFS relevant to AR treatment are currently unknown. Methods: This study combined in vivo chemical profiling, network pharmacology, and experimental validation to identify the substances in YPFS that are active against AR. Results: Firstly, 98 compounds in YPFS were identified using high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) with the assistance of Global Natural Products Social (GNPS) molecular networking. Then, 42 prototype components and 57 metabolites were detected in the plasma, urine, and feces of mice with AR. A network pharmacological analysis based on 42 in vivo prototypical components was also conducted to screen 15 key components and 10 core targets, and 6 key components were further selected through molecular docking. Finally, the four key active components (cimifugin, wogonin, formononetin, and atractylenolide I) were revealed to be the main ingredients of YPFS through validation (in vitro and in vivo). Conclusions: This is the first systematic study of the components of YPFS in AR mice, laying the foundation for elucidating the overall material basis of this formulation. This study provides rich basic data for further pharmacological and mechanistic studies on YPFS. [ABSTRACT FROM AUTHOR]
Copyright of Pharmaceuticals (14248247) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
Full text is not displayed to guests.
More Details
ISSN:14248247
DOI:10.3390/ph18040540
Published in:Pharmaceuticals (14248247)
Language:English