Bibliographic Details
Title: |
Effect of Bio-Cementation Level and Rainfall Intensity on Surface Erosion Resistance of Biotreated Slope Using PEICP Method. |
Authors: |
Chen, Yuyuan1 (AUTHOR), Hazarika, Hemanta1,2 (AUTHOR) hazarika@civil.kyushu-u.ac.jp, Marchelina, Nadella1,2 (AUTHOR) |
Source: |
Materials (1996-1944). Apr2025, Vol. 18 Issue 7, p1662. 20p. |
Subject Terms: |
*RAINFALL, *SOIL structure, *SLOPE stability, *SURFACE resistance, *REINFORCED soils, *EROSION, *SOIL erosion |
Abstract: |
Biomineralization technology is a promising method for soil cementation, enhancing its mechanical properties. However, its application in mitigating slope surface erosion caused by rainfall has not been fully explored. This study experimentally examined the feasibility of using plant-based enzyme-induced carbonate precipitation (PEICP) to reduce slope surface rainfall erosion through simulated rainfall tests. The effects of biotreatment cycles (N) and rainfall intensity (Ri) on erosion resistance were evaluated. The results demonstrated that increasing the biotreatment cycles improved the bio-cementation level, as evidenced by enhanced surface strength, increased calcium carbonate content (CCC) and thicker crust layers. Specifically, as the biotreatment cycles (N) increased from 2 to 6, the crust layer thickness expanded from 5.2 mm to 15.7 mm, with surface strength rising from 38.3 kPa to 244.3 kPa. Likewise, the CCC increased significantly from 1.09% to 5.32%, further reinforcing the soil structure and enhancing erosion resistance. Slopes treated with six biotreatment cycles exhibited optimal erosion resistance across rainfall intensities ranging from 45 to 100 mm/h. Compared to untreated slopes, biotreated slopes showed significant reductions in soil loss, with a decrease to below 10% at N = 4 and near-complete erosion resistance at N = 6. These findings highlight the potential of PEICP technology for improving slope stability under rainfall conditions. [ABSTRACT FROM AUTHOR] |
|
Copyright of Materials (1996-1944) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Academic Search Complete |
Full text is not displayed to guests. |
Login for full access.
|