Bibliographic Details
Title: |
Evaluating the Relationship Between Vegetation Status and Soil Moisture in Semi-Arid Woodlands, Central Australia, Using Daily Thermal, Vegetation Index, and Reflectance Data. |
Authors: |
Holzman, Mauro1,2 (AUTHOR), Srivastava, Ankur2 (AUTHOR) ankursrivastava117@gmail.com, Rivas, Raúl3 (AUTHOR), Huete, Alfredo1,2 (AUTHOR) |
Source: |
Remote Sensing. Feb2025, Vol. 17 Issue 4, p635. 29p. |
Subject Terms: |
*LAND surface temperature, *WATER temperature, *SURFACE energy, *SOIL profiles, *OPTICAL spectra |
Abstract: |
Wet rainfall pulses control vegetation growth through evapotranspiration in most dryland areas. This topic has not been extensively analyzed with respect to the vast semi-arid ecosystems of Central Australia. In this study, we investigated vegetation water responses to in situ root zone soil moisture (SM) variations in savanna woodlands (Mulga) in Central Australia using satellite-based optical and thermal data. Specifically, we used the Land Surface Water Index (LSWI) derived from the Advanced Himawari Imager on board the Himawari 8 (AHI) satellite, alongside Land Surface Temperature (LST) from MODIS Terra and Aqua (MOD/MYD11A1), as indicators of vegetation water status and surface energy balance, respectively. The analysis covered the period from 2016 to 2021. The LSWI increased with the magnitude of wet pulses and showed significant lags in the temporal response to SM, with behavior similar to that of the Enhanced Vegetation Index (EVI). By contrast, LST temporal responses were quicker and correlated with daily in situ SM at different depths. These results were consistent with in situ relationships between LST and SM, with the decreases in LST being coherent with wet pulse magnitude. Daily LSWI and EVI scores were best related to subsurface SM through quadratic relationships that accounted for the lag in vegetation response. Tower flux measures of gross primary production (GPP) were also related to the magnitude of wet pulses, being more correlated with the LSWI and EVI than LST. The results indicated that the vegetation response varied with SM depths. We propose a conceptual model for the relationship between LST and SM in the soil profile, which is useful for the monitoring/forecasting of wet pulse impacts on vegetation. Understanding the temporal changes in rainfall-driven vegetation in the thermal/optical spectra associated with increases in SM can allow us to predict the spatial impact of wet pulses on vegetation dynamics in extensive drylands. [ABSTRACT FROM AUTHOR] |
|
Copyright of Remote Sensing is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Academic Search Complete |
Full text is not displayed to guests. |
Login for full access.
|