Novel force feedback technology improves suturing in robotic-assisted surgery: a pre-clinical study.

Bibliographic Details
Title: Novel force feedback technology improves suturing in robotic-assisted surgery: a pre-clinical study.
Authors: Servais, Elliot L.1, Rashidi, Laila2, Porwal, Priyanshi3, Garibaldi, Mark3, Hung, Andrew J.4 andrew.hung@cshs.org
Source: Surgical Endoscopy & Other Interventional Techniques. Feb2025, Vol. 39 Issue 2, p1217-1226. 10p.
Subject Terms: *SURGICAL robots, *SURGICAL education
Abstract: Introduction: The inability to sense force applied to tissue is suggested as a limitation to robotic-assisted surgery (RAS). This pre-clinical study evaluated the impact of a novel force feedback (FFB) technology, integrated on a next-generation robotic system that allows surgeons to sense forces exerted at the instrument tips, on suturing performance by novice surgeons during RAS. Methods: Twenty-nine novice surgeons (< 50 RAS cases in the last 5 years) were randomized into two groups with (n = 15) or without (n = 14) FFB sensing. Participants performed interrupted stitches on ex vivo porcine bladder and running stitches on porcine aorta (Fig. 1A) over four runs. Average forces applied, number of errors, time for exercise completion, and Robotic Anastomosis Competence Evaluation (RACE) technical skill ratings were compared using a three-way mixed-model ANOVA and applicable post hoc tests. Results: FFB sensing significantly lowered the mean force applied (bladder, 1.71 N vs 2.40 N, p < 0.006; aorta, 1.80 N vs 2.53 N, p < 0.006), average number of errors (bladder, 0.59 vs 1.76, p < 0.001; aorta, 0.38 vs 1.14, p < 0.001), and the time to completion (bladder, 659 s vs 781 s, p = 0.002; aorta, 460 s vs 570 s, p = 0.001) (Fig. 1C). The FFB group applied less tissue trauma with a higher RACE skill score (3.75 vs 3.03, p = 0.012). Conclusion: This study showed that novice surgeons using FFB-enabled instruments completed suturing tasks using less force, with fewer errors, taking less time, and less tissue trauma during RAS. Future studies are required to better understand the impact of FFB technology on surgical performance and potential patient benefits. [ABSTRACT FROM AUTHOR]
Copyright of Surgical Endoscopy & Other Interventional Techniques is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
More Details
ISSN:18666817
DOI:10.1007/s00464-024-11472-9
Published in:Surgical Endoscopy & Other Interventional Techniques
Language:English