ASGR1 deficiency improves atherosclerosis but alters liver metabolism in ApoE-/- mice.

Bibliographic Details
Title: ASGR1 deficiency improves atherosclerosis but alters liver metabolism in ApoE-/- mice.
Authors: Svecla, Monika1 (AUTHOR), Moregola, Annalisa1 (AUTHOR), Dalt, Lorenzo Da1 (AUTHOR), Nour, Jasmine1 (AUTHOR), Baragetti, Andrea1 (AUTHOR), Uboldi, Patrizia1 (AUTHOR), Idini, Alessandra1 (AUTHOR), Wuhrer, Manfred2 (AUTHOR), Beretta, Giangiacomo3 (AUTHOR), Falck, David2 (AUTHOR), Bonacina, Fabrizia1 (AUTHOR), Norata, Giuseppe Danilo1 (AUTHOR) danilo.norata@unimi.it
Source: Cardiovascular Diabetology. 11/30/2024, Vol. 23 Issue 1, p1-14. 14p.
Subject Terms: *WESTERN diet, *BLOOD lipids, *LIPID metabolism, *ATHEROSCLEROTIC plaque, *CHOLESTEROL metabolism, *GALACTOSE, *XENOBIOTICS
Abstract: The asialoglycoprotein receptor 1 (ASGR1), a multivalent carbohydrate-binding receptor that primarily is responsible for recognizing and eliminating circulating glycoproteins with exposed galactose (Gal) or N-acetylgalactosamine (GalNAc) as terminal glycan residues, has been implicated in modulating the lipid metabolism and reducing cardiovascular disease burden. In this study, we investigated the impact of ASGR1 deficiency (ASGR1−/−) on atherosclerosis by evaluating its effects on plaque formation, lipid metabolism, circulating immunoinflammatory response, and circulating N-glycome under the hypercholesterolemic condition in ApoE-deficient mice. After 16 weeks of a western-type diet, ApoE−/−/ASGR1−/− mice presented lower plasma cholesterol and triglyceride levels compared to ApoE−/−. This was associated with reduced atherosclerotic plaque area and necrotic core formation. Interestingly, ApoE−/−/ASGR1−/− mice showed increased levels of circulating immune cells, increased AST/ALT ratio, and no changes in the N-glycome profile and liver morphology. The liver of ApoE−/−/ASGR1−/− mice, however, presented alterations in the metabolism of lipids, xenobiotics, and bile secretion, indicating broader alterations in liver homeostasis beyond lipids. These data suggest that improvements in circulating lipid metabolism and atherosclerosis in ASGR1 deficiency is paralleled by a deterioration of liver injury. These findings point to the need for additional evaluation before considering ASGR1 as a pharmacological target for dyslipidemia and cardiovascular disorders. [ABSTRACT FROM AUTHOR]
Copyright of Cardiovascular Diabetology is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
Full text is not displayed to guests.
More Details
ISSN:14752840
DOI:10.1186/s12933-024-02507-5
Published in:Cardiovascular Diabetology
Language:English