Nonseparable wave evolution equations in quantum kinetics.

Bibliographic Details
Title: Nonseparable wave evolution equations in quantum kinetics.
Authors: Dedes, C.1 c_dedes@yahoo.com
Source: Physics Essays. Sep2024, Vol. 37 Issue 3, p215-219. 5p.
Subject Terms: *INTEGRO-differential equations, *EVOLUTION equations, *WIGNER distribution, *WAVE equation, *PHASE space
Abstract (English): A nonseparable wave-like integro-differential equation for the time evolution of the Wigner distribution function in phase space is educed from the corresponding separable kinetic equation. By employing the quantum hydrodynamical description, a non-local evolution wave equation is also derived by synthesizing the Hamilton-Jacobi equation with that of continuity, which predicts the generation of nonlocal and quadrupole quantum phenomena in the propagation of the spatial probability density. [ABSTRACT FROM AUTHOR]
Abstract (French): Une equation integro-differentielle ondulatoire non separable pour l'evolution temporelle de la fonction de distribution de Wigner dans r espace des phases est deduite de l'equation cinetique separable correspondante. En utilisant la description hydrodynamique quantique, une equation d'onde dévolution non locale est egalement derivee en synthetisant l'equation de Hamilton-Jacobi avec celle de continuite, qui prédit la generation de phenomenes quantiques non locaux et quadri- polaires dans la propagation de la densite de probabilite spatiale. [ABSTRACT FROM AUTHOR]
Copyright of Physics Essays is the property of Physics Essays Publication and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
More Details
ISSN:08361398
DOI:10.4006/0836-1398-37.3.215
Published in:Physics Essays
Language:English