Electromyography- and Bioimpedance-Based Detection of Swallow Onset for the Control of Dysphagia Treatment.

Bibliographic Details
Title: Electromyography- and Bioimpedance-Based Detection of Swallow Onset for the Control of Dysphagia Treatment.
Authors: Riebold, Benjamin1 (AUTHOR) riebold@tu-berlin.de, Seidl, Rainer O.2 (AUTHOR) rainer.seidl@ukb.de, Schauer, Thomas1 (AUTHOR) schauer@control.tu-berlin.de
Source: Sensors (14248220). Oct2024, Vol. 24 Issue 20, p6525. 25p.
Subject Terms: *ELECTRIC stimulation, *DEGLUTITION, *DATABASES, *MACHINE learning, *STANDARD deviations, *DEGLUTITION disorders
Abstract: Several studies support the benefits of biofeedback and Functional Electrical Stimulation (FES) in dysphagia therapy. Most commonly, adhesive electrodes are placed on the submental region of the neck to conduct Electromyography (EMG) measurements for controlling gamified biofeedback and functional electrical stimulation. Due to the diverse origin of EMG activity at the neck, it can be assumed that EMG measurements alone do not accurately reflect the onset of the pharyngeal swallowing phase (onset of swallowing). To date, no study has addressed the timing and detection performance of swallow onsets on a comprehensive database including dysphagia patients. This study includes EMG and BioImpedance (BI) measurements of 41 dysphagia patients to compare the timing and performance in the Detection of Swallow Onsets (DoSO) using EMG alone versus combined BI and EMG measurements. The latter approach employs a BI-based data segmentation of potential swallow onsets and a machine-learning-based classifier to distinguish swallow onsets from non-swallow events. Swallow onsets labeled by an expert serve as a reference. In addition to the F1 score, the mean and standard deviation of the detection delay regarding reference events have been determined. The EMG-based DoSO achieved an F1 score of 0.289 with a detection delay of 0.018 s ± 0.203 s. In comparison, the BI/EMG-based DoSO achieved an F1 score of 0.546 with a detection delay of 0.033 s ± 0.1 s. Therefore, the BI/EMG-based DoSO has better timing and detection performance compared to the EMG-based DoSO and potentially improves biofeedback and FES in dysphagia therapy. [ABSTRACT FROM AUTHOR]
Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
Full text is not displayed to guests.
More Details
ISSN:14248220
DOI:10.3390/s24206525
Published in:Sensors (14248220)
Language:English