The Key Targets of NO-Mediated Post-Translation Modification (PTM) Highlighting the Dynamic Metabolism of ROS and RNS in Peroxisomes.

Bibliographic Details
Title: The Key Targets of NO-Mediated Post-Translation Modification (PTM) Highlighting the Dynamic Metabolism of ROS and RNS in Peroxisomes.
Authors: Ergashev, Ulugbek1 (AUTHOR) ergashevulugbek207@gmail.com, Yu, Mei1 (AUTHOR) yumei@ahau.edu.cn, Luo, Long1 (AUTHOR) luoloong@ahau.edu.cn, Tang, Jie2 (AUTHOR) tangjie@ahau.edu.cn, Han, Yi1 (AUTHOR) tangjie@ahau.edu.cn
Source: International Journal of Molecular Sciences. Aug2024, Vol. 25 Issue 16, p8873. 16p.
Subject Terms: *REACTIVE nitrogen species, *POST-translational modification, *REACTIVE oxygen species, *PEROXISOMES, *SUSTAINABLE agriculture
Abstract: Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO−) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Molecular Sciences is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
Full text is not displayed to guests.
More Details
ISSN:16616596
DOI:10.3390/ijms25168873
Published in:International Journal of Molecular Sciences
Language:English