Engineering surface state density of monolayer CVD grown 2D MoS2 for enhanced photodetector performance.

Bibliographic Details
Title: Engineering surface state density of monolayer CVD grown 2D MoS2 for enhanced photodetector performance.
Authors: Polumati, Gowtham1 (AUTHOR), Kolli, Chandra Sekhar Reddy1 (AUTHOR), de Luna Bugallo, Andres2 (AUTHOR) aluna@fata.unam.mx, Sahatiya, Parikshit1,3 (AUTHOR) aluna@fata.unam.mx
Source: PLoS ONE. 4/10/2024, Vol. 19 Issue 4, p1-15. 15p.
Subject Terms: *SURFACE states, *DENSITY of states, *PHOTODETECTORS, *DOPING agents (Chemistry), *MONOMOLECULAR films, *ENGINEERING
Abstract: This study demonstrates the effect of nitrogen doping on the surface state densities (Nss) of monolayer MoS2 and its effect on the responsivity and the response time of the photodetector. Our experimental results shows that by doping monolayer MoS2 by nitrogen, the surface state (Nss) increases thereby increasing responsivity. The mathematical model included in the paper supports the relation of photocurrent gain and its dependency on trap level which states that the increasing the trap density increases the photocurrent gain and the same is observed experimentally. The experimental results at room temperature revealed that nitrogen doped MoS2 have a high NSS of 1.63 X 1013 states/m2/eV compared to undoped MoS2 of 4.2 x 1012 states/m2/eV. The increase in Nss in turn is the cause for rise in trap states which eventually increases the value of photo responsivity from 65.12 A/W (undoped MoS2) to 606.3 A/W (nitrogen doped MoS2). The response time calculated for undoped MoS2 was 0.85 sec and for doped MoS2 was 0.35 sec. Finally, to verify the dependence of surface states on the responsivity, the surface states were varied by varying temperature and it was observed that upon increment in temperature, the surface states decreases which causes the responsivity values also to decrease. [ABSTRACT FROM AUTHOR]
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
Full text is not displayed to guests.
More Details
ISSN:19326203
DOI:10.1371/journal.pone.0297825
Published in:PLoS ONE
Language:English