Title: |
The oscillation of mitotic kinase governs cell cycle latches in mammalian cells. |
Authors: |
Dragoi, Calin-Mihai1, Kaur, Ekjot2, Barr, Alexis R.2,3, Tyson, John J.4, Novák, Béla1 bela.novak@bioch.ox.ac.uk |
Source: |
Journal of Cell Science. Feb2024, Vol. 137 Issue 3, p1-15. 15p. |
Subject Terms: |
*MAMMALIAN cell cycle, *CELL cycle proteins, *OSCILLATIONS, *CYCLINS |
Abstract: |
The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how wholegenome doubling can arise, a common event in tumorigenesis that can drive tumour evolution. [ABSTRACT FROM AUTHOR] |
|
Copyright of Journal of Cell Science is the property of Company of Biologists Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Academic Search Complete |