Bibliographic Details
Title: |
The Beneficial Fungus Mortierella hyalina Modulates Amino Acid Homeostasis in Arabidopsis under Nitrogen Starvation. |
Authors: |
Svietlova, Nataliia1 (AUTHOR) nsvietlova@ice.mpg.de, Reichelt, Michael2 (AUTHOR) reichelt@ice.mpg.de, Zhyr, Liza1 (AUTHOR) yzhyr@ice.mpg.de, Majumder, Anindya1 (AUTHOR) amajumder@bot.uni-kiel.de, Scholz, Sandra S.3 (AUTHOR) s.scholz@uni-jena.de, Grabe, Veit4 (AUTHOR) vgrabe@ice.mpg.de, Krapp, Anne5 (AUTHOR) anne.krapp@inrae.fr, Oelmüller, Ralf3 (AUTHOR) ralf.oelmueller@uni-jena.de, Mithöfer, Axel1 (AUTHOR) amithoefer@ice.mpg.de |
Source: |
International Journal of Molecular Sciences. Nov2023, Vol. 24 Issue 22, p16128. 16p. |
Subject Terms: |
*MORTIERELLA, *AMINO acids, *SOIL fungi, *STARVATION, *FUNGI, *HOMEOSTASIS, *PLANT hormones, *PLANT defenses, *PLANT growing media |
Abstract: |
Non-mycorrhizal but beneficial fungi often mitigate (a)biotic stress-related traits in host plants. The underlying molecular mechanisms are mostly still unknown, as in the interaction between the endophytic growth-promoting soil fungus Mortierella hyalina and Arabidopsis thaliana. Here, abiotic stress in the form of nitrogen (N) deficiency was used to investigate the effects of the fungus on colonized plants. In particular, the hypothesis was investigated that fungal infection could influence N deficiency via an interaction with the high-affinity nitrate transporter NRT2.4, which is induced by N deficiency. For this purpose, Arabidopsis wild-type nrt2.4 knock-out and NRT2.4 reporter lines were grown on media with different nitrate concentrations with or without M. hyalina colonization. We used chemical analysis methods to determine the amino acids and phytohormones. Experimental evidence suggests that the fungus does not modulate NRT2.4 expression under N starvation. Instead, M. hyalina alleviates N starvation in other ways: The fungus supplies nitrogen (15N) to the N-starved plant. The presence of the fungus restores the plants' amino acid homeostasis, which was out of balance due to N deficiency, and causes a strong accumulation of branched-chain amino acids. We conclude that the plant does not need to invest in defense and resources for growth are maintained, which in turn benefits the fungus, suggesting that this interaction should be considered a mutualistic symbiosis. [ABSTRACT FROM AUTHOR] |
|
Copyright of International Journal of Molecular Sciences is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Academic Search Complete |
Full text is not displayed to guests. |
Login for full access.
|