Identification of tophi in ultrasound imaging based on transfer learning and clinical practice.

Bibliographic Details
Title: Identification of tophi in ultrasound imaging based on transfer learning and clinical practice.
Authors: Lin, Tzu-Min1,2 (AUTHOR), Lee, Hsiang-Yen2 (AUTHOR), Chang, Ching-Kuei2 (AUTHOR), Lin, Ke-Hung2 (AUTHOR), Chang, Chi-Ching1,2 (AUTHOR), Wu, Bing-Fei3 (AUTHOR), Peng, Syu-Jyun4,5 (AUTHOR) sjpeng2019@tmu.edu.tw
Source: Scientific Reports. 8/2/2023, Vol. 13 Issue 1, p1-7. 7p.
Subject Terms: *DUAL energy CT (Tomography), *ULTRASONIC imaging, *CONVOLUTIONAL neural networks, *TRANSFER of training, *COMPUTED tomography, *GOUT
Abstract: Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy. [ABSTRACT FROM AUTHOR]
Copyright of Scientific Reports is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
Full text is not displayed to guests.
More Details
ISSN:20452322
DOI:10.1038/s41598-023-39508-5
Published in:Scientific Reports
Language:English