Bibliographic Details
Title: |
EL HEPTÁGONO DE FRAY IGNACIO MUÑOZ Y SU MANIFIESTO GEOMETRICO (1684). |
Alternate Title: |
THE HEPTAGON OF FRAY IGNACIO MUÑOZ AND ITS GEOMETRIC MANIFESTO (1684). |
Authors: |
Lluis-Teruel, Cinta1, Lluis i Ginovart, Josep1 |
Source: |
Revista de EGA. 2023, Vol. 28 Issue 47, p122-135. 14p. |
Subject Terms: |
*HEPTAGON, *GEOMETRY in architecture, *MATHEMATICS & architecture, *PRESERVATION of architecture, *SCIENTIFIC knowledge, NEW Spain |
People: |
IGNACIO Munoz, Fray, KEPLER, Johannes, 1571-1630 |
Abstract (English): |
The Dominican Ignacio Muñoz was in the Philippines, New Spain and at the Court, publishing the Manifiesto Geometrico (1684), a work dedicated to the construction of the regular heptagon, with an inquisitorial criticism of the Kepler figure study of Harmonices mundi (1619), for considering the polygon as unknowable. Special interests are the manuscripts of his knowledge of geometric basis that have survived to our days and whose use is adapted to the needs of the preservation of the Spanish empire in the xvii century, which serve them to sustain their mathematical demonstration for the construction of the septanguli. Kepler was right about the nonconstructability of the heptagon as Gauss demonstrated, but Friar Ignacio died without knowing that his method, using the geometric arithmetic relation of (9/4), would be one of the most precise that quantitatively devised until the xxi century. [ABSTRACT FROM AUTHOR] |
Abstract (Spanish): |
El dominico Ignacio Muñoz estuvo en Filipinas, Nueva España y en la Corte, publicando el Manifiesto Geometrico (1684), obra dedicada a la construcción del heptágono regular, con una crítica inquisitorial al estudio de figura Kepler de Harmonices mundi (1619), por considerar al polígono como incognoscible. Especial interés revisten los manuscritos de sus conocimientos de base geométrica que han llegado a nuestros días y cuya utilización se adaptan a las necesidades del mantenimiento de imperio español en el siglo xvii y que les sirven para sustentar su demostración matemática para la construcción del septanguli. Kepler tenía razón ante la inconstructibilidad del heptágono como demostró Gauss, pero fray Ignacio murió sin saber que su método, utilizando la relación aritmética geométrica de (9/4), sería uno de los más precisos que cuantitativamente se han desarrollado hasta el siglo xxi. [ABSTRACT FROM AUTHOR] |
|
Copyright of Revista de EGA is the property of Revista EGA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Academic Search Complete |