Exploring the Potential Mechanism of Artemisinin and Its Derivatives in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking.

Bibliographic Details
Title: Exploring the Potential Mechanism of Artemisinin and Its Derivatives in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking.
Authors: Ma, Yujie1 (AUTHOR), Liu, Haixia1 (AUTHOR), Lu, Xinyue1 (AUTHOR), Song, Changheng1 (AUTHOR), Cheng, Yin1 (AUTHOR), Wang, Yuhan1 (AUTHOR), Li, Pei1 (AUTHOR), Chen, Yanjing1 (AUTHOR), Zhang, Zhiguo1 (AUTHOR)
Source: Computational & Mathematical Methods in Medicine. 12/22/2022, p1-13. 13p.
Subject Terms: *ARTEMISININ derivatives, *MOLECULAR pharmacology, *MOLECULAR docking, *AMP-activated protein kinases, *OSTEOPOROSIS, *HUMAN reproductive technology
Abstract: Objective. This study is aimed at predicting and contrasting the mechanisms of artemisinin (ARS), dihydroartemisinin (DHA), artesunate (ART), artemether (ARM), and arteether (ARE) in the treatment of osteoporosis (OP) using network pharmacology and molecular docking. Methods. The targets of ARS, DHA, ART, ARM, and ARE were obtained from the SwissTargetPrediction. The targets related to OP were obtained from the TTD, DrugBank, Genecards, and DisGeNet databases. Then, the anti-OP targets of ARS, DHA, ART, ARM, and ARE were obtained and compared using the Venn diagram. Afterward, the protein-protein interaction (PPI) networks were built using the STRING database, and Cytoscape was used to select hub targets. Moreover, molecular docking validated the binding association between five molecules and hub targets. Finally, GO enrichment and KEGG pathway enrichment were conducted using the DAVID database. The common pathways of five molecules were analysed. Results. A total of 28, 37, 36, 27, and 33 anti-OP targets of ARS, DHA, ART, ARM, and ARE were acquired. EGFR, EGFR, CASP3, MAPK8, and CASP3 act as the top 1 anti-OP targets of ARS, DHA, ART, ARM, and ARE, respectively. MAPK14 is the common target of five molecules. All five molecules can bind well with these hubs and common targets. Meanwhile, functional annotation showed that MAPK, Serotonergic synapse, AMPK, prolactin, and prolactin signaling pathways are the top 1 anti-OP pathway of ARS, DHA, ART, ARM, and ARE, respectively. IL-17 signaling pathway and prolactin signaling pathway are common anti-OP pathways of five molecules. Besides, GO enrichment showed five biological processes and three molecular functions are common anti-OP mechanisms of five molecules. Conclusion. ARS, DHA, ART, ARM and ARE can treat OP through multi-targets and multi pathways, respectively. All five molecules can treat OP by targeting MAPK14 and acting on the IL-17 and prolactin signaling pathways. [ABSTRACT FROM AUTHOR]
Copyright of Computational & Mathematical Methods in Medicine is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
Full text is not displayed to guests.
More Details
ISSN:1748670X
DOI:10.1155/2022/3976062
Published in:Computational & Mathematical Methods in Medicine
Language:English