Title: |
Recent Advances in High-Throughput Nanomaterial Manufacturing for Hybrid Flexible Bioelectronics. |
Authors: |
Zavanelli, Nathan1 (AUTHOR) nzavanelli@gatech.edu, Kim, Jihoon1 (AUTHOR) louisjihoonkim@gatech.edu, Yeo, Woon-Hong1,2,3 (AUTHOR) whyeo@gatech.edu |
Source: |
Materials (1996-1944). Jun2021, Vol. 14 Issue 11, p2973. 1p. |
Subject Terms: |
*BIOELECTRONICS, *NANOMANUFACTURING, *FLEXOGRAPHY, *RHEOLOGY, *NANOSTRUCTURED materials |
Abstract: |
Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be discovered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements. [ABSTRACT FROM AUTHOR] |
|
Copyright of Materials (1996-1944) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
Database: |
Academic Search Complete |
Full text is not displayed to guests. |
Login for full access.
|